DPU-Direct: Unleashing Remote Accelerators via Enhanced RDMA for Disaggregated Datacenters

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-03-22 DOI:10.1109/TC.2024.3404089
Yunkun Liao;Jingya Wu;Wenyan Lu;Xiaowei Li;Guihai Yan
{"title":"DPU-Direct: Unleashing Remote Accelerators via Enhanced RDMA for Disaggregated Datacenters","authors":"Yunkun Liao;Jingya Wu;Wenyan Lu;Xiaowei Li;Guihai Yan","doi":"10.1109/TC.2024.3404089","DOIUrl":null,"url":null,"abstract":"This paper presents DPU-Direct, an accelerator disaggregation system that connects accelerator nodes (ANs) and CPU nodes (CNs) over a standard Remote Direct Memory Access (RDMA) network. DPU-Direct eliminates the latency introduced by the CPU-based network stack, and PCIe interconnects between network I/O and the accelerator. The DPU-Direct system architecture includes a DPU Wrapper hardware architecture, an RDMA-based Accelerator Access Pattern (RAAP), and a CN-side programming model. The DPU Wrapper connects accelerators directly with the RDMA engine, turning ANs into disaggregation-native devices. The RAAP provides the CN with low-latency and high throughput accelerator semantics based on standard RDMA operations. Our FPGA prototype demonstrates DPU-Direct's efficacy with two proof-of-concept applications: AES encryption and key-value cache, which are computationally intensive and latency-sensitive. DPU-Direct yields a 400x speedup in AES encryption over the CPU baseline and matches the performance of the locally integrated AES accelerator. For key-value cache, DPU-Direct reduces the average end-to-end latency by 1.66x for GETs and 1.30x for SETs over the CPU-RDMA-Polling baseline, reducing latency jitter by over 10x for both operations.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 8","pages":"2081-2095"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10536912/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents DPU-Direct, an accelerator disaggregation system that connects accelerator nodes (ANs) and CPU nodes (CNs) over a standard Remote Direct Memory Access (RDMA) network. DPU-Direct eliminates the latency introduced by the CPU-based network stack, and PCIe interconnects between network I/O and the accelerator. The DPU-Direct system architecture includes a DPU Wrapper hardware architecture, an RDMA-based Accelerator Access Pattern (RAAP), and a CN-side programming model. The DPU Wrapper connects accelerators directly with the RDMA engine, turning ANs into disaggregation-native devices. The RAAP provides the CN with low-latency and high throughput accelerator semantics based on standard RDMA operations. Our FPGA prototype demonstrates DPU-Direct's efficacy with two proof-of-concept applications: AES encryption and key-value cache, which are computationally intensive and latency-sensitive. DPU-Direct yields a 400x speedup in AES encryption over the CPU baseline and matches the performance of the locally integrated AES accelerator. For key-value cache, DPU-Direct reduces the average end-to-end latency by 1.66x for GETs and 1.30x for SETs over the CPU-RDMA-Polling baseline, reducing latency jitter by over 10x for both operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DPU-Direct:通过增强型 RDMA 为分散的数据中心释放远程加速器
本文介绍的 DPU-Direct 是一种加速器分解系统,它通过标准远程直接内存访问 (RDMA) 网络连接加速器节点 (AN) 和 CPU 节点 (CN)。DPU-Direct 消除了基于 CPU 的网络堆栈和网络 I/O 与加速器之间的 PCIe 互连所带来的延迟。DPU-Direct 系统架构包括 DPU Wrapper 硬件架构、基于 RDMA 的加速器访问模式 (RAAP) 和 CN 端编程模型。DPU Wrapper 可将加速器与 RDMA 引擎直接连接,从而将 AN 转化为分解原生设备。RAAP 为 CN 提供了基于标准 RDMA 操作的低延迟、高吞吐量加速器语义。我们的 FPGA 原型通过两个概念验证应用展示了 DPU-Direct 的功效:AES 加密和键值缓存是计算密集型和延迟敏感型应用。与 CPU 相比,DPU-Direct 的 AES 加密速度提高了 400 倍,与本地集成的 AES 加速器性能相当。在键值缓存方面,与 CPU-RDMA 轮询基线相比,DPU-Direct 将 GET 的平均端到端延迟降低了 1.66 倍,将 SET 的平均端到端延迟降低了 1.30 倍,将这两种操作的延迟抖动降低了 10 倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1