Information-flow interfaces

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Formal Methods in System Design Pub Date : 2024-05-23 DOI:10.1007/s10703-024-00447-0
Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic, Ana Oliveira da Costa
{"title":"Information-flow interfaces","authors":"Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic, Ana Oliveira da Costa","doi":"10.1007/s10703-024-00447-0","DOIUrl":null,"url":null,"abstract":"<p>Contract-based design is a promising methodology for taming the complexity of developing sophisticated systems. A formal contract distinguishes between <i>assumptions</i>, which are constraints that the designer of a component puts on the environments in which the component can be used safely, and <i>guarantees</i>, which are promises that the designer asks from the team that implements the component. A theory of formal contracts can be formalized as an <i>interface theory</i>, which supports the composition and refinement of both assumptions and guarantees. Although there is a rich landscape of contract-based design methods that address functional and extra-functional properties, we present the first interface theory designed to ensure system-wide security properties. Our framework provides a refinement relation and a composition operation that support both incremental design and independent implementability. We develop our theory for both <i>stateless</i> and <i>stateful</i> interfaces. Additionally, we introduce information-flow contracts where <i>assumptions</i> and <i>guarantees</i> are sets of flow relations. We use these contracts to illustrate how to enrich information-flow interfaces with a semantic view. We illustrate the applicability of our framework with two examples inspired by the automotive domain.</p>","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"67 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10703-024-00447-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Contract-based design is a promising methodology for taming the complexity of developing sophisticated systems. A formal contract distinguishes between assumptions, which are constraints that the designer of a component puts on the environments in which the component can be used safely, and guarantees, which are promises that the designer asks from the team that implements the component. A theory of formal contracts can be formalized as an interface theory, which supports the composition and refinement of both assumptions and guarantees. Although there is a rich landscape of contract-based design methods that address functional and extra-functional properties, we present the first interface theory designed to ensure system-wide security properties. Our framework provides a refinement relation and a composition operation that support both incremental design and independent implementability. We develop our theory for both stateless and stateful interfaces. Additionally, we introduce information-flow contracts where assumptions and guarantees are sets of flow relations. We use these contracts to illustrate how to enrich information-flow interfaces with a semantic view. We illustrate the applicability of our framework with two examples inspired by the automotive domain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息流接口
基于合约的设计是一种很有前途的方法,可以降低复杂系统开发的复杂性。正式合约将假设和保证区分开来,前者是组件设计者对安全使用组件的环境提出的约束,后者是设计者对实现组件的团队提出的要求。形式化合约理论可以形式化为接口理论,它支持假设和保证的组合和细化。尽管基于合约的设计方法涉及功能性和功能外属性,但我们提出的第一个接口理论旨在确保整个系统的安全属性。我们的框架提供了细化关系和组合操作,支持增量设计和独立可实现性。我们的理论适用于无状态和有状态接口。此外,我们还引入了信息流合约,其中的假设和保证是信息流关系的集合。我们使用这些契约来说明如何用语义视图来丰富信息流接口。我们通过两个受汽车领域启发的例子来说明我们框架的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Formal Methods in System Design
Formal Methods in System Design 工程技术-计算机:理论方法
CiteScore
2.00
自引率
12.50%
发文量
16
审稿时长
>12 weeks
期刊介绍: The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.
期刊最新文献
Abstraction Modulo Stability PAC statistical model checking of mean payoff in discrete- and continuous-time MDP A verified durable transactional mutex lock for persistent x86-TSO Formally understanding Rust’s ownership and borrowing system at the memory level The hexatope and octatope abstract domains for neural network verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1