{"title":"Quantitative derivation of a two-phase porous media system from the one-velocity Baer–Nunziato and Kapila systems","authors":"Timothée Crin-Barat, Ling-Yun Shou and Jin Tan","doi":"10.1088/1361-6544/ad3f66","DOIUrl":null,"url":null,"abstract":"We derive a novel two-phase flow system in porous media as a relaxation limit of compressible multi-fluid systems. Considering a one-velocity Baer–Nunziato system with friction forces, we first justify its pressure-relaxation limit toward a Kapila model in a uniform manner with respect to the time-relaxation parameter associated with the friction forces. Then, we show that the diffusely rescaled solutions of the damped Kapila system converge to the solutions of the new two-phase porous media system as the time-relaxation parameter tends to zero. In addition, we also prove the convergence of the Baer–Nunziato system to the same two-phase porous media system as both relaxation parameters tend to zero. For each relaxation limit, we exhibit sharp rates of convergence in a critical regularity setting. Our proof is based on an elaborate low-frequency and high-frequency analysis via the Littlewood–Paley decomposition and includes three main ingredients: a refined spectral analysis of the linearized problem to determine the frequency threshold explicitly in terms of the time-relaxation parameter, the introduction of an effective flux in the low-frequency region to overcome the loss of parameters due to the overdamping phenomenon, and renormalized energy estimates in the high-frequency region to cancel higher-order nonlinear terms. To justify the convergence rates, we discover several auxiliary unknowns allowing us to recover crucial bounds.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad3f66","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We derive a novel two-phase flow system in porous media as a relaxation limit of compressible multi-fluid systems. Considering a one-velocity Baer–Nunziato system with friction forces, we first justify its pressure-relaxation limit toward a Kapila model in a uniform manner with respect to the time-relaxation parameter associated with the friction forces. Then, we show that the diffusely rescaled solutions of the damped Kapila system converge to the solutions of the new two-phase porous media system as the time-relaxation parameter tends to zero. In addition, we also prove the convergence of the Baer–Nunziato system to the same two-phase porous media system as both relaxation parameters tend to zero. For each relaxation limit, we exhibit sharp rates of convergence in a critical regularity setting. Our proof is based on an elaborate low-frequency and high-frequency analysis via the Littlewood–Paley decomposition and includes three main ingredients: a refined spectral analysis of the linearized problem to determine the frequency threshold explicitly in terms of the time-relaxation parameter, the introduction of an effective flux in the low-frequency region to overcome the loss of parameters due to the overdamping phenomenon, and renormalized energy estimates in the high-frequency region to cancel higher-order nonlinear terms. To justify the convergence rates, we discover several auxiliary unknowns allowing us to recover crucial bounds.
期刊介绍:
Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest.
Subject coverage:
The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal.
Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena.
Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.