A K-means Algorithm for Financial Market Risk Forecasting

Jinxin Xu, Kaixian Xu, Yue Wang, Qinyan Shen, Ruisi Li
{"title":"A K-means Algorithm for Financial Market Risk Forecasting","authors":"Jinxin Xu, Kaixian Xu, Yue Wang, Qinyan Shen, Ruisi Li","doi":"arxiv-2405.13076","DOIUrl":null,"url":null,"abstract":"Financial market risk forecasting involves applying mathematical models,\nhistorical data analysis and statistical methods to estimate the impact of\nfuture market movements on investments. This process is crucial for investors\nto develop strategies, financial institutions to manage assets and regulators\nto formulate policy. In today's society, there are problems of high error rate\nand low precision in financial market risk prediction, which greatly affect the\naccuracy of financial market risk prediction. K-means algorithm in machine\nlearning is an effective risk prediction technique for financial market. This\nstudy uses K-means algorithm to develop a financial market risk prediction\nsystem, which significantly improves the accuracy and efficiency of financial\nmarket risk prediction. Ultimately, the outcomes of the experiments confirm\nthat the K-means algorithm operates with user-friendly simplicity and achieves\na 94.61% accuracy rate","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于金融市场风险预测的 K-means 算法
金融市场风险预测涉及应用数学模型、历史数据分析和统计方法来估计未来市场波动对投资的影响。这一过程对于投资者制定战略、金融机构管理资产和监管机构制定政策都至关重要。当今社会,金融市场风险预测存在误差率高、精度低的问题,极大地影响了金融市场风险预测的准确性。机器学习中的 K-means 算法是一种有效的金融市场风险预测技术。本研究利用 K-means 算法开发了金融市场风险预测系统,大大提高了金融市场风险预测的准确性和效率。最终,实验结果证实,K-means 算法操作简便,准确率达到 94.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1