Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platforms†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-05-22 DOI:10.1039/D4DD00046C
Martin Seifrid, Felix Strieth-Kalthoff, Mohammad Haddadnia, Tony C. Wu, Emre Alca, Leticia Bodo, Sebastian Arellano-Rubach, Naruki Yoshikawa, Marta Skreta, Rachel Keunen and Alán Aspuru-Guzik
{"title":"Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platforms†","authors":"Martin Seifrid, Felix Strieth-Kalthoff, Mohammad Haddadnia, Tony C. Wu, Emre Alca, Leticia Bodo, Sebastian Arellano-Rubach, Naruki Yoshikawa, Marta Skreta, Rachel Keunen and Alán Aspuru-Guzik","doi":"10.1039/D4DD00046C","DOIUrl":null,"url":null,"abstract":"<p >We introduce <em>Chemspyd</em>, a lightweight, open-source Python package for operating the popular laboratory robotic platforms from Chemspeed Technologies. As an add-on to the existing proprietary software suite, <em>Chemspyd</em> enables dynamic communication with the automated platform, laying the foundation for its modular integration into customizable, higher-level laboratory workflows. We show the applicability of <em>Chemspyd</em> in a set of case studies from chemistry and materials science. We demonstrate how the package can be used with large language models to provide a natural language interface. By providing an open-source software interface for a commercial robotic platform, we hope to inspire the development of open interfaces that facilitate the flexible, adaptive integration of existing laboratory equipment into automated laboratories.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1319-1326"},"PeriodicalIF":6.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00046c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00046c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Chemspyd, a lightweight, open-source Python package for operating the popular laboratory robotic platforms from Chemspeed Technologies. As an add-on to the existing proprietary software suite, Chemspyd enables dynamic communication with the automated platform, laying the foundation for its modular integration into customizable, higher-level laboratory workflows. We show the applicability of Chemspyd in a set of case studies from chemistry and materials science. We demonstrate how the package can be used with large language models to provide a natural language interface. By providing an open-source software interface for a commercial robotic platform, we hope to inspire the development of open interfaces that facilitate the flexible, adaptive integration of existing laboratory equipment into automated laboratories.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemspyd:用于 Chemspeed 机器人化学和材料平台的开源 python 界面
我们介绍的 Chemspyd 是一款轻量级开源 Python 软件包,用于操作 Chemspeed Technologies 公司的流行实验室机器人平台。作为现有专有软件套件的附加组件,Chemspyd 实现了与自动化平台的动态通信,为将其模块化集成到可定制的、更高级别的实验室工作流程中奠定了基础。我们在一组化学和材料科学案例研究中展示了 Chemspyd 的适用性。我们展示了该软件包如何与大型语言模型一起使用,以提供自然语言界面。通过为商用机器人平台提供开源软件接口,我们希望能够激励开放接口的开发,从而促进现有实验室设备灵活、自适应地集成到自动化实验室中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1