Transfer Learning Approach for Railway Technical Map (RTM) Component Identification

Obadage Rochana Rumalshan, Pramuka Weerasinghe, Mohamed Shaheer, Prabhath Gunathilake, Erunika Dayaratna
{"title":"Transfer Learning Approach for Railway Technical Map (RTM) Component Identification","authors":"Obadage Rochana Rumalshan, Pramuka Weerasinghe, Mohamed Shaheer, Prabhath Gunathilake, Erunika Dayaratna","doi":"arxiv-2405.13229","DOIUrl":null,"url":null,"abstract":"The extreme popularity over the years for railway transportation urges the\nnecessity to maintain efficient railway management systems around the globe.\nEven though, at present, there exist a large collection of Computer Aided\nDesigned Railway Technical Maps (RTMs) but available only in the portable\ndocument format (PDF). Using Deep Learning and Optical Character Recognition\ntechniques, this research work proposes a generic system to digitize the\nrelevant map component data from a given input image and create a formatted\ntext file per image. Out of YOLOv3, SSD and Faster-RCNN object detection models\nused, Faster-RCNN yields the highest mean Average Precision (mAP) and the\nhighest F1 score values 0.68 and 0.76 respectively. Further it is proven from\nthe results obtained that, one can improve the results with OCR when the text\ncontaining image is being sent through a sophisticated pre-processing pipeline\nto remove distortions.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The extreme popularity over the years for railway transportation urges the necessity to maintain efficient railway management systems around the globe. Even though, at present, there exist a large collection of Computer Aided Designed Railway Technical Maps (RTMs) but available only in the portable document format (PDF). Using Deep Learning and Optical Character Recognition techniques, this research work proposes a generic system to digitize the relevant map component data from a given input image and create a formatted text file per image. Out of YOLOv3, SSD and Faster-RCNN object detection models used, Faster-RCNN yields the highest mean Average Precision (mAP) and the highest F1 score values 0.68 and 0.76 respectively. Further it is proven from the results obtained that, one can improve the results with OCR when the text containing image is being sent through a sophisticated pre-processing pipeline to remove distortions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁路技术图 (RTM) 组件识别的迁移学习方法
尽管目前存在大量计算机辅助设计的铁路技术地图(RTM),但这些地图只有PDF格式。利用深度学习和光学字符识别技术,这项研究工作提出了一种通用系统,可从给定的输入图像中数字化相关的地图组件数据,并为每幅图像创建一个格式化文本文件。在使用的 YOLOv3、SSD 和 Faster-RCNN 物体检测模型中,Faster-RCNN 的平均精度(mAP)最高,F1 分数最高,分别为 0.68 和 0.76。此外,所获得的结果还证明,如果将包含文本的图像通过复杂的预处理管道发送,以消除失真,则可以提高 OCR 的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1