{"title":"Development and characterization of a coaxial strain-sensing cable integrated steel strand for wide-range stress monitoring","authors":"Tong Jiao, Chuhong Pu, Qiang Xu, Minggao Tang, Xing Zhu, Chuankun Liu, Jiang Li","doi":"10.1515/rams-2023-0165","DOIUrl":null,"url":null,"abstract":"Monitoring the stress of steel strands, from initial tension to eventual failure, is paramount for assessing structural safety and understanding its failure mechanism. Current monitoring methods are restricted in measuring stress only until yielding because of their limited range. This study proposes a novel coaxial strain-sensing cable (CSSC) based intelligent steel strand (CSSC-ISS), which has both functions of force-bearing and self-sensing. First, the prototype design of CSSC-ISS and the sensing principle of CSSC are introduced. Then, a fabrication method of small-diameter CSSC is proposed, which is then encapsulated with glass fiber reinforced polymer (GFRP) material, forming a GFRP sensing rod (GFRP-SR). The next step involves replacing the strand’s central wire with the GFRP-SR, culminating in the creation of the CSSC-ISS. Finally, Laboratory tests show that the CSSC has excellent strain-sensing performance with a resolution of at least 100 µε and a measurement range of 150,000 µε. The GFRP-SR offers good sensing potential and comparable mechanical strength to standard GFRP rods. Notably, the CSSC-ISS could measure stress up to strand failure, retaining 87.9% tensile strength and 88.7% elastic modulus compared to standard steel strands. It is verified that the CSSC-ISS can consistently measure its stress condition throughout its life cycle without compromising its load-bearing potential.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"36 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0165","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring the stress of steel strands, from initial tension to eventual failure, is paramount for assessing structural safety and understanding its failure mechanism. Current monitoring methods are restricted in measuring stress only until yielding because of their limited range. This study proposes a novel coaxial strain-sensing cable (CSSC) based intelligent steel strand (CSSC-ISS), which has both functions of force-bearing and self-sensing. First, the prototype design of CSSC-ISS and the sensing principle of CSSC are introduced. Then, a fabrication method of small-diameter CSSC is proposed, which is then encapsulated with glass fiber reinforced polymer (GFRP) material, forming a GFRP sensing rod (GFRP-SR). The next step involves replacing the strand’s central wire with the GFRP-SR, culminating in the creation of the CSSC-ISS. Finally, Laboratory tests show that the CSSC has excellent strain-sensing performance with a resolution of at least 100 µε and a measurement range of 150,000 µε. The GFRP-SR offers good sensing potential and comparable mechanical strength to standard GFRP rods. Notably, the CSSC-ISS could measure stress up to strand failure, retaining 87.9% tensile strength and 88.7% elastic modulus compared to standard steel strands. It is verified that the CSSC-ISS can consistently measure its stress condition throughout its life cycle without compromising its load-bearing potential.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.