Insight into Cr Alloying on Face‐Centered Cubic to Body‐Centered Cubic Phase Transition in FeCr Alloy

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Physica Status Solidi B-basic Solid State Physics Pub Date : 2024-05-26 DOI:10.1002/pssb.202400158
Hao Yang, Jin‐Han Yang, Ming‐Hui Cai, Shuai Tang, Han Ma, Nan Jia, Yan‐Dong Liu, Xiang Zhao, Hai‐Le Yan, Liang Zuo
{"title":"Insight into Cr Alloying on Face‐Centered Cubic to Body‐Centered Cubic Phase Transition in FeCr Alloy","authors":"Hao Yang, Jin‐Han Yang, Ming‐Hui Cai, Shuai Tang, Han Ma, Nan Jia, Yan‐Dong Liu, Xiang Zhao, Hai‐Le Yan, Liang Zuo","doi":"10.1002/pssb.202400158","DOIUrl":null,"url":null,"abstract":"Effects of Cr alloying on phase stability, magnetism, and electronic structures in both body‐centered cubic (bcc) and face‐centered cubic (fcc) phases and on the transformation from fcc to bcc are studied by first‐principles calculations. Results show that the doped Cr atoms in fcc and bcc phases choose distinct occupation models. This phenomenon can be understood from the amount of electron density of states close to Fermi energy. For magnetism, Cr tends to be antiferromagnetically coupled with the surrounding Fe in the studied phases. The magnetic moment of Fe is greater than that of Cr in bcc, but the order is reversed in fcc. The moment of Fe is dictated by the distance between it and the doped Cr in bcc, whereas it is dominated by spatial orientation with Cr in fcc. For phase stability, it is found that the alloying of Cr prefers destabilizing bcc while tends to stabilize fcc, leading to a strong inhibition of phase transition from fcc to bcc. Notably, the role in the fcc phase is more prominent than that in bcc, which can be associated with the antiferromagnetism between Fe and Cr in fcc.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400158","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Effects of Cr alloying on phase stability, magnetism, and electronic structures in both body‐centered cubic (bcc) and face‐centered cubic (fcc) phases and on the transformation from fcc to bcc are studied by first‐principles calculations. Results show that the doped Cr atoms in fcc and bcc phases choose distinct occupation models. This phenomenon can be understood from the amount of electron density of states close to Fermi energy. For magnetism, Cr tends to be antiferromagnetically coupled with the surrounding Fe in the studied phases. The magnetic moment of Fe is greater than that of Cr in bcc, but the order is reversed in fcc. The moment of Fe is dictated by the distance between it and the doped Cr in bcc, whereas it is dominated by spatial orientation with Cr in fcc. For phase stability, it is found that the alloying of Cr prefers destabilizing bcc while tends to stabilize fcc, leading to a strong inhibition of phase transition from fcc to bcc. Notably, the role in the fcc phase is more prominent than that in bcc, which can be associated with the antiferromagnetism between Fe and Cr in fcc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铬合金化对铁铬合金中面心立方到体心立方相变的启示
通过第一原理计算,研究了铬合金化对体心立方(bcc)和面心立方(fcc)相的相稳定性、磁性和电子结构的影响,以及对从 fcc 到 bcc 转变的影响。结果表明,在 fcc 和 bcc 相中,掺杂的铬原子选择了不同的占据模式。这一现象可以从接近费米能的电子密度状态量中得到理解。就磁性而言,在所研究的相中,铬倾向于与周围的铁发生反铁磁耦合。在 bcc 中,铁的磁矩大于铬的磁矩,但在 fcc 中,两者的顺序正好相反。 在 bcc 中,铁的磁矩由它与掺杂的铬之间的距离决定,而在 fcc 中,它则受与铬的空间取向的支配。 在相稳定性方面,研究发现,铬的合金化倾向于破坏 bcc 的稳定性,而倾向于稳定 fcc,从而强烈抑制了从 fcc 到 bcc 的相变。值得注意的是,在 fcc 相中的作用比在 bcc 中的作用更为突出,这可能与 fcc 中铁和铬之间的反铁磁性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
期刊最新文献
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond Tip‐Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene Magnetic Anisotropy of Cr2Te3: Competition between Surface and Middle Layers Progress in Non‐equilibrium Green's Functions VIII (PNGF VIII) Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1