Manifestations of Anomalous Dissipation in Dusty Plasma in the Solar System: Atmosphereless Cosmic Bodies

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Solar System Research Pub Date : 2024-05-20 DOI:10.1134/s003809462370003x
S. I. Popel, L. M. Zelenyi
{"title":"Manifestations of Anomalous Dissipation in Dusty Plasma in the Solar System: Atmosphereless Cosmic Bodies","authors":"S. I. Popel, L. M. Zelenyi","doi":"10.1134/s003809462370003x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>One of the main features that distinguishes dusty plasma from ordinary (not containing charged dust particles) plasma is anomalous dissipation associated with the process of charging dust particles, leading to new physical phenomena, effects and mechanisms. The process of anomalous dissipation is considered in the context of describing the dynamics of dust particles in the dusty plasma of atmosphereless bodies of the Solar System. A description of the oscillations of a dust particle over the surfaces of Mercury, the Moon, and the Martian satellites Phobos and Deimos is presented, the attenuation of which is determined by the charging frequency of the dust particles, which characterizes anomalous dissipation. The possibility of using an approach that takes into account anomalous dissipation to describe plasma-dust processes in the vicinity of comets is discussed. It is shown that anomalous dissipation plays a significant role in determining the possibility of using the model of levitating dust particles in describing dusty plasma over the surfaces of atmosphereless bodies of the Solar System. The results of numerical calculations are presented, confirming the possibility of using this model for a number of atmospherelesso cosmic bodies.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s003809462370003x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main features that distinguishes dusty plasma from ordinary (not containing charged dust particles) plasma is anomalous dissipation associated with the process of charging dust particles, leading to new physical phenomena, effects and mechanisms. The process of anomalous dissipation is considered in the context of describing the dynamics of dust particles in the dusty plasma of atmosphereless bodies of the Solar System. A description of the oscillations of a dust particle over the surfaces of Mercury, the Moon, and the Martian satellites Phobos and Deimos is presented, the attenuation of which is determined by the charging frequency of the dust particles, which characterizes anomalous dissipation. The possibility of using an approach that takes into account anomalous dissipation to describe plasma-dust processes in the vicinity of comets is discussed. It is shown that anomalous dissipation plays a significant role in determining the possibility of using the model of levitating dust particles in describing dusty plasma over the surfaces of atmosphereless bodies of the Solar System. The results of numerical calculations are presented, confirming the possibility of using this model for a number of atmospherelesso cosmic bodies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳系尘埃等离子体的异常耗散表现:无大气层宇宙天体
摘要-尘埃等离子体区别于普通(不含带电尘埃粒子)等离子体的主要特征之一是与尘埃粒子带电过程相关的反常耗散,从而导致新的物理现象、效应和机制。反常耗散过程是在描述太阳系无大气层天体尘埃等离子体中尘埃粒子动力学的背景下考虑的。介绍了尘埃粒子在水星、月球、火星卫星火卫一和火卫二表面上的振荡情况,其衰减由尘埃粒子的充电频率决定,这就是反常耗散的特征。讨论了使用一种考虑到反常耗散的方法来描述彗星附近等离子体-尘埃过程的可能性。结果表明,反常耗散在决定是否有可能使用悬浮尘埃粒子模型来描述太阳系无大气层天体表面的尘埃等离子体方面起着重要作用。数值计算的结果证实了对一些无大气层的宇宙天体使用这一模型的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
期刊最新文献
Impact Craters on Earth with a Diameter of More than 200 km: Numerical Modeling Determining Optimal Parameters for Mercury’s Magnetospheric Current Systems from MESSENGER Observations Analysis of Water in the Regolith of the Moon Using the LASMA-LR Instrument During the Luna-27 Mission Propagation of Hydromagnetic Disturbance Waves and Gravitational Instability in a Magnetized Rotating Heat-Conducting Anisotropic Plasma On the Nature of Electrophone Phenomena Accompanying the Passage of Meteoric Bodies through the Earth’s Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1