Riemannian Preconditioned Coordinate Descent for Low Multilinear Rank Approximation

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Matrix Analysis and Applications Pub Date : 2024-05-21 DOI:10.1137/21m1463896
Mohammad Hamed, Reshad Hosseini
{"title":"Riemannian Preconditioned Coordinate Descent for Low Multilinear Rank Approximation","authors":"Mohammad Hamed, Reshad Hosseini","doi":"10.1137/21m1463896","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1054-1075, June 2024. <br/> Abstract. This paper presents a memory-efficient, first-order method for low multilinear rank approximation of high-order, high-dimensional tensors. In our method, we exploit the second-order information of the cost function and the constraints to suggest a new Riemannian metric on the Grassmann manifold. We use a Riemmanian coordinate descent method for solving the problem and also provide a global convergence analysis matching that of the coordinate descent method in the Euclidean setting. We also show that each step of our method with the unit step size is actually a step of the orthogonal iteration algorithm. Experimental results show the computational advantage of our method for high-dimensional tensors.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1463896","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1054-1075, June 2024.
Abstract. This paper presents a memory-efficient, first-order method for low multilinear rank approximation of high-order, high-dimensional tensors. In our method, we exploit the second-order information of the cost function and the constraints to suggest a new Riemannian metric on the Grassmann manifold. We use a Riemmanian coordinate descent method for solving the problem and also provide a global convergence analysis matching that of the coordinate descent method in the Euclidean setting. We also show that each step of our method with the unit step size is actually a step of the orthogonal iteration algorithm. Experimental results show the computational advantage of our method for high-dimensional tensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低多线性秩逼近的黎曼预条件坐标后退法
SIAM 矩阵分析与应用期刊》,第 45 卷,第 2 期,第 1054-1075 页,2024 年 6 月。 摘要本文提出了一种内存高效的一阶方法,用于高阶高维张量的低多线性秩逼近。在我们的方法中,我们利用代价函数和约束条件的二阶信息,在格拉斯曼流形上提出了一个新的黎曼度量。我们使用黎曼坐标下降法来解决问题,并提供了与欧几里得坐标下降法相匹配的全局收敛分析。我们还证明,我们方法中单位步长的每一步实际上都是正交迭代算法的一步。实验结果表明,我们的方法对高维张量具有计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
期刊最新文献
On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations Multichannel Frequency Estimation with Constant Amplitude via Convex Structured Low-Rank Approximation Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1