Lingling Wang, Tao Wang, Xiaohui Zhao, Haibing Ren, Jingshi Li, Juan Yang
{"title":"PKM2 Activator TEPP-46 Suppresses Inflammation, Apoptosis, and Oxidative Disordering of Amyloid-Beta Treated Human Neuroblastoma","authors":"Lingling Wang, Tao Wang, Xiaohui Zhao, Haibing Ren, Jingshi Li, Juan Yang","doi":"10.1134/s1819712424010240","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Beta-amyloid peptides (Aβ) are common risk factors associated with cognitive impairment, neuroinflammation, and apoptosis in Alzheimer’s disease (AD). The glycolytic enzyme PKM2 is an essential antioxidant intermediate by promoting glutathione (GSH) biosynthesis, shielding neurons against oxidative damage, and conferring neuroprotective effects. However, its role in AD has rarely been reported. This study aimed to explore the mechanism underlying PKM2 activation in an AD cell model via the PKM2 activator TEPP-46. Aβ administration in SH-SY5Y cells reduced cell viability while increasing inflammation, apoptosis, and oxidative disorder. PKM2 activity, rather than its expression, was reduced in the AD cell model. TEPP-46 administration could restore PKM2 activity, reverse the suppressive effect of Aβ on cell viability and proliferation, reduce the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), decrease Aβ-triggered cell apoptosis, and restore cellular oxidative stress. Furthermore, the effect of TEPP-46 on the AD cell model was confirmed by deactivating P62, reversing the Bax/Bcl-2 ratio, and activating the Nrf2/HO-1 pathway by western blotting. Additionally, colivelin, an Nrf2 antagonist, deactivates the Nrf2/HO-1 pathway and recovers oxidative stress. Colivelin administration could also offset the influence of TEPP-46 on Aβ-induced SH-SY5Y cell inflammation and apoptosis and viability.</p>","PeriodicalId":19119,"journal":{"name":"Neurochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1134/s1819712424010240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Beta-amyloid peptides (Aβ) are common risk factors associated with cognitive impairment, neuroinflammation, and apoptosis in Alzheimer’s disease (AD). The glycolytic enzyme PKM2 is an essential antioxidant intermediate by promoting glutathione (GSH) biosynthesis, shielding neurons against oxidative damage, and conferring neuroprotective effects. However, its role in AD has rarely been reported. This study aimed to explore the mechanism underlying PKM2 activation in an AD cell model via the PKM2 activator TEPP-46. Aβ administration in SH-SY5Y cells reduced cell viability while increasing inflammation, apoptosis, and oxidative disorder. PKM2 activity, rather than its expression, was reduced in the AD cell model. TEPP-46 administration could restore PKM2 activity, reverse the suppressive effect of Aβ on cell viability and proliferation, reduce the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), decrease Aβ-triggered cell apoptosis, and restore cellular oxidative stress. Furthermore, the effect of TEPP-46 on the AD cell model was confirmed by deactivating P62, reversing the Bax/Bcl-2 ratio, and activating the Nrf2/HO-1 pathway by western blotting. Additionally, colivelin, an Nrf2 antagonist, deactivates the Nrf2/HO-1 pathway and recovers oxidative stress. Colivelin administration could also offset the influence of TEPP-46 on Aβ-induced SH-SY5Y cell inflammation and apoptosis and viability.
期刊介绍:
Neurochemical Journal (Neirokhimiya) provides a source for the communication of the latest findings in all areas of contemporary neurochemistry and other fields of relevance (including molecular biology, biochemistry, physiology, neuroimmunology, pharmacology) in an afford to expand our understanding of the functions of the nervous system. The journal presents papers on functional neurochemistry, nervous system receptors, neurotransmitters, myelin, chromaffin granules and other components of the nervous system, as well as neurophysiological and clinical aspects, behavioral reactions, etc. Relevant topics include structure and function of the nervous system proteins, neuropeptides, nucleic acids, nucleotides, lipids, and other biologically active components.
The journal is devoted to the rapid publication of regular papers containing the results of original research, reviews highlighting major developments in neurochemistry, short communications, new experimental studies that use neurochemical methodology, descriptions of new methods of value for neurochemistry, theoretical material suggesting novel principles and approaches to neurochemical problems, presentations of new hypotheses and significant findings, discussions, chronicles of congresses, meetings, and conferences with short presentations of the most sensational and timely reports, information on the activity of the Russian and International Neurochemical Societies, as well as advertisements of reagents and equipment.