ABWOA: adaptive boundary whale optimization algorithm for large-scale digital twin network construction

Hao Feng, Kun Cao, Gan Huang, Hao Liu
{"title":"ABWOA: adaptive boundary whale optimization algorithm for large-scale digital twin network construction","authors":"Hao Feng, Kun Cao, Gan Huang, Hao Liu","doi":"10.1186/s13677-024-00667-z","DOIUrl":null,"url":null,"abstract":"Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale networks, a crucial problem is how to effectively map physical networks onto the infrastructure platform of DTN. To address this issue, we propose a heuristic method of the adaptive boundary whale optimization algorithm (ABWOA) to solve the digital twin network construction problem, improving the efficiency and reducing operational costs of DTN. Extensive comparison experiments are conducted between ABWOA and various algorithms such as genetic algorithm, particle swarm optimization, artificial bee colony, differential evolution algorithm, moth search algorithm and original whale optimization algorithm. The experimental results show that ABWOA is superior to other algorithms in terms of solution quality, convergence speed, and time cost. It can solve the digital twin network construction problem more effectively.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00667-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale networks, a crucial problem is how to effectively map physical networks onto the infrastructure platform of DTN. To address this issue, we propose a heuristic method of the adaptive boundary whale optimization algorithm (ABWOA) to solve the digital twin network construction problem, improving the efficiency and reducing operational costs of DTN. Extensive comparison experiments are conducted between ABWOA and various algorithms such as genetic algorithm, particle swarm optimization, artificial bee colony, differential evolution algorithm, moth search algorithm and original whale optimization algorithm. The experimental results show that ABWOA is superior to other algorithms in terms of solution quality, convergence speed, and time cost. It can solve the digital twin network construction problem more effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABWOA:大规模数字孪生网络构建的自适应边界鲸优化算法
数字孪生网络(DTN)作为一种新兴的网络范例,已引起越来越多的关注。对于大规模网络而言,如何有效地将物理网络映射到 DTN 的基础设施平台上是一个关键问题。针对这一问题,我们提出了一种启发式方法--自适应边界鲸优化算法(ABWOA)来解决数字孪生网络构建问题,从而提高 DTN 的效率并降低运营成本。ABWOA与遗传算法、粒子群优化算法、人工蜂群算法、差分进化算法、飞蛾搜索算法、原鲸优化算法等多种算法进行了广泛的对比实验。实验结果表明,ABWOA 在求解质量、收敛速度和时间成本方面都优于其他算法。它能更有效地解决数字孪生网络构建问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cost-efficient content distribution optimization model for fog-based content delivery networks Toward security quantification of serverless computing SMedIR: secure medical image retrieval framework with ConvNeXt-based indexing and searchable encryption in the cloud A trusted IoT data sharing method based on secure multi-party computation Wind power prediction method based on cloud computing and data privacy protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1