Trent DeGiovanni, Fernando Guevara Vasquez, China Mauck
{"title":"Imaging with Thermal Noise Induced Currents","authors":"Trent DeGiovanni, Fernando Guevara Vasquez, China Mauck","doi":"10.1137/23m1571630","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 984-1006, June 2024. <br/> Abstract.We use thermal noise induced currents to image the real and imaginary parts of the conductivity of a body. Covariances of the thermal noise currents measured at a few electrodes are shown to be related to a deterministic problem. We use the covariances obtained while selectively heating the body to recover the real power density in the body under known boundary conditions and at a known frequency. The resulting inverse problem is related to acousto-electric tomography, but where the conductivity is complex and only the real power is measured. We study the local solvability of this problem by determining where its linearization is elliptic. Numerical experiments illustrating this inverse problem are included.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1571630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 984-1006, June 2024. Abstract.We use thermal noise induced currents to image the real and imaginary parts of the conductivity of a body. Covariances of the thermal noise currents measured at a few electrodes are shown to be related to a deterministic problem. We use the covariances obtained while selectively heating the body to recover the real power density in the body under known boundary conditions and at a known frequency. The resulting inverse problem is related to acousto-electric tomography, but where the conductivity is complex and only the real power is measured. We study the local solvability of this problem by determining where its linearization is elliptic. Numerical experiments illustrating this inverse problem are included.