Vahab Sarfarazi, Jinwei Fu, Hadi Haeri, Mina Tahmasebi Moez, Manoj Khandelwal
{"title":"Experimental and numerical investigation on crack propagation for a zigzag central cracked Brazilian disk","authors":"Vahab Sarfarazi, Jinwei Fu, Hadi Haeri, Mina Tahmasebi Moez, Manoj Khandelwal","doi":"10.1007/s40571-024-00762-7","DOIUrl":null,"url":null,"abstract":"<p>This study examines the influence of zigzag joint configuration on crack propagation in centrally cracked Brazilian disks subjected to diametric forces, employing a 2-dimensional Particle Flow Code (PFC2D). An 80-mm-diameter disk specimen was used, featuring a single zigzag joint positioned at its center. The angles between the zigzag joint walls varied (45°, 90°, 135°), and the angle between loading and joint direction ranged from 0° to 90°. Testing was conducted under Brazilian indirect tensile (Splitting tensile test) conditions, with Acoustic Emission (AE) data utilized to analyze fracture progression. The movements of the boundary rate were kept at 0.005 mm/s. Brazilian tensile strength and uniaxial compression strength of samples were 0.8MPa and 7.4 MPa, respectively. The failure strengths were found to be contingent on the specific failure mechanism, which, in turn, was influenced by the geometric attributes of the flaws considered. The maximum failure force correlated with the number of tensile cracks, which increased as the zigzag notch angle decreased. Initial loading exhibited few AE events, but subsequently, AE hits escalated prior to reaching peak force, with the number of hits increasing as the zigzag notch angle decreased. The failure pattern and maximum force observed in specimens closely mirrored results obtained through both numerical simulations and experimental methods.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00762-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the influence of zigzag joint configuration on crack propagation in centrally cracked Brazilian disks subjected to diametric forces, employing a 2-dimensional Particle Flow Code (PFC2D). An 80-mm-diameter disk specimen was used, featuring a single zigzag joint positioned at its center. The angles between the zigzag joint walls varied (45°, 90°, 135°), and the angle between loading and joint direction ranged from 0° to 90°. Testing was conducted under Brazilian indirect tensile (Splitting tensile test) conditions, with Acoustic Emission (AE) data utilized to analyze fracture progression. The movements of the boundary rate were kept at 0.005 mm/s. Brazilian tensile strength and uniaxial compression strength of samples were 0.8MPa and 7.4 MPa, respectively. The failure strengths were found to be contingent on the specific failure mechanism, which, in turn, was influenced by the geometric attributes of the flaws considered. The maximum failure force correlated with the number of tensile cracks, which increased as the zigzag notch angle decreased. Initial loading exhibited few AE events, but subsequently, AE hits escalated prior to reaching peak force, with the number of hits increasing as the zigzag notch angle decreased. The failure pattern and maximum force observed in specimens closely mirrored results obtained through both numerical simulations and experimental methods.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.