No-Reference Multi-Level Video Quality Assessment Metric for 3D-Synthesized Videos

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-03-21 DOI:10.1109/TBC.2024.3396696
Guangcheng Wang;Baojin Huang;Ke Gu;Yuchen Liu;Hongyan Liu;Quan Shi;Guangtao Zhai;Wenjun Zhang
{"title":"No-Reference Multi-Level Video Quality Assessment Metric for 3D-Synthesized Videos","authors":"Guangcheng Wang;Baojin Huang;Ke Gu;Yuchen Liu;Hongyan Liu;Quan Shi;Guangtao Zhai;Wenjun Zhang","doi":"10.1109/TBC.2024.3396696","DOIUrl":null,"url":null,"abstract":"The visual quality of 3D-synthesized videos is closely related to the development and broadcasting of immersive media such as free-viewpoint videos and six degrees of freedom navigation. Therefore, studying the 3D-Synthesized video quality assessment is helpful to promote the popularity of immersive media applications. Inspired by the texture compression, depth compression and virtual view synthesis polluting the visual quality of 3D-synthesized videos at pixel-, structure- and content-levels, this paper proposes a Multi-Level 3D-Synthesized Video Quality Assessment algorithm, namely ML-SVQA, which consists of a quality feature perception module and a quality feature regression module. Specifically, the quality feature perception module firstly extracts motion vector fields of the 3D-synthesized video at pixel-, structure- and content-levels by combining the perception mechanism of human visual system. Then, the quality feature perception module measures the temporal flicker distortion intensity in the no-reference environment by calculating the self-similarity of adjacent motion vector fields. Finally, the quality feature regression module uses the machine learning algorithm to learn the mapping of the developed quality features to the quality score. Experiments constructed on the public IRCCyN/IVC and SIAT synthesized video datasets show that our ML-SVQA is more effective than state-of-the-art image/video quality assessment methods in evaluating the quality of 3D-Synthesized videos.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"584-596"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535713/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The visual quality of 3D-synthesized videos is closely related to the development and broadcasting of immersive media such as free-viewpoint videos and six degrees of freedom navigation. Therefore, studying the 3D-Synthesized video quality assessment is helpful to promote the popularity of immersive media applications. Inspired by the texture compression, depth compression and virtual view synthesis polluting the visual quality of 3D-synthesized videos at pixel-, structure- and content-levels, this paper proposes a Multi-Level 3D-Synthesized Video Quality Assessment algorithm, namely ML-SVQA, which consists of a quality feature perception module and a quality feature regression module. Specifically, the quality feature perception module firstly extracts motion vector fields of the 3D-synthesized video at pixel-, structure- and content-levels by combining the perception mechanism of human visual system. Then, the quality feature perception module measures the temporal flicker distortion intensity in the no-reference environment by calculating the self-similarity of adjacent motion vector fields. Finally, the quality feature regression module uses the machine learning algorithm to learn the mapping of the developed quality features to the quality score. Experiments constructed on the public IRCCyN/IVC and SIAT synthesized video datasets show that our ML-SVQA is more effective than state-of-the-art image/video quality assessment methods in evaluating the quality of 3D-Synthesized videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维合成视频的无参考多级视频质量评估指标
三维合成视频的视觉质量与自由视点视频和六自由度导航等沉浸式媒体的开发和播放密切相关。因此,研究三维合成视频质量评估有助于促进身临其境媒体应用的普及。受纹理压缩、深度压缩和虚拟视图合成在像素级、结构级和内容级污染三维合成视频视觉质量的启发,本文提出了一种多级三维合成视频质量评估算法,即 ML-SVQA,该算法由质量特征感知模块和质量特征回归模块组成。具体来说,质量特征感知模块首先结合人类视觉系统的感知机制,从像素、结构和内容三个层面提取三维合成视频的运动矢量场。然后,质量特征感知模块通过计算相邻运动矢量场的自相似性来测量无参照环境下的时间闪烁失真强度。最后,质量特征回归模块使用机器学习算法来学习所开发的质量特征与质量得分之间的映射关系。在公开的 IRCCyN/IVC 和 SIAT 合成视频数据集上构建的实验表明,在评估 3D 合成视频质量方面,我们的 ML-SVQA 比最先进的图像/视频质量评估方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Front Cover Table of Contents Table of Contents IEEE Transactions on Broadcasting Information for Authors IEEE Transactions on Broadcasting Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1