Desheng Chen;Jiabao Wen;Huiao Dai;Meng Xi;Shuai Xiao;Jiachen Yang
{"title":"Enhancing Transportation Management in Marine Internet of Vessels: A 5G Broadcasting-Centric Framework Leveraging Federated Learning","authors":"Desheng Chen;Jiabao Wen;Huiao Dai;Meng Xi;Shuai Xiao;Jiachen Yang","doi":"10.1109/TBC.2024.3394289","DOIUrl":null,"url":null,"abstract":"The Maritime Internet of Things (MIoT) consists of offshore equipment such as ships, consoles, and base stations, which are used for maritime information sharing to assist driving decision-making. However, with the increase in the number of MIoT access devices, the risks of information security and data reliability have also significantly increased. In this paper, we describe a maritime Dynamic Ship Federated Information Security Sharing Model (DSF-ISS) in Maritime Internet of Vessels (MIoV) based on maritime 5G broadcasting technology. The main object of this study is to solve the problem of maritime information isolated island under the condition of low communication between maritime ship nodes. In this model, maritime ship nodes cooperation is based on the Contract Network Protocol (CNP), which considers task types, spatial, and temporal distribution of different vessels. We then propose an improved federated learning approach for local dynamic nodes based on maritime 5G broadcasting technology. Moreover, this study designs a proof of membership (PoM) to share local task model information in global blockchain. The results showed that DSF-ISS has a positive effect in maritime transportation work. It effectively realizes the secure sharing of information and protects the privacy of node data.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"1091-1103"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10536129/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Maritime Internet of Things (MIoT) consists of offshore equipment such as ships, consoles, and base stations, which are used for maritime information sharing to assist driving decision-making. However, with the increase in the number of MIoT access devices, the risks of information security and data reliability have also significantly increased. In this paper, we describe a maritime Dynamic Ship Federated Information Security Sharing Model (DSF-ISS) in Maritime Internet of Vessels (MIoV) based on maritime 5G broadcasting technology. The main object of this study is to solve the problem of maritime information isolated island under the condition of low communication between maritime ship nodes. In this model, maritime ship nodes cooperation is based on the Contract Network Protocol (CNP), which considers task types, spatial, and temporal distribution of different vessels. We then propose an improved federated learning approach for local dynamic nodes based on maritime 5G broadcasting technology. Moreover, this study designs a proof of membership (PoM) to share local task model information in global blockchain. The results showed that DSF-ISS has a positive effect in maritime transportation work. It effectively realizes the secure sharing of information and protects the privacy of node data.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”