Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. Part II: A Filtering-Based Framework

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Computational Imaging Pub Date : 2024-03-20 DOI:10.1109/TCI.2024.3402441
Kinan Abbas;Matthieu Puigt;Gilles Delmaire;Gilles Roussel
{"title":"Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. Part II: A Filtering-Based Framework","authors":"Kinan Abbas;Matthieu Puigt;Gilles Delmaire;Gilles Roussel","doi":"10.1109/TCI.2024.3402441","DOIUrl":null,"url":null,"abstract":"This paper presents novel unmixing and demosaicing methods for snapshot spectral imaging (SSI) systems utilizing Fabry-Perot filters. Unlike conventional approaches that perform unmixing after image restoration or demosaicing, our proposed methods leverage Fabry-Perot filter deconvolution and extend the “pure pixel” framework to the SSI sensor patch level, enabling improved unmixing accuracy and introducing the concept of localized spectral purity. Through extensive experimentation on synthetically generated data and real images captured by SSI cameras, we demonstrate the superiority of our methods over state-of-the-art techniques. Furthermore, our results showcase the effectiveness of the proposed approach over our recently proposed joint unmixing and demosaicing method based on low-rank matrix completion.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"806-817"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535201/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents novel unmixing and demosaicing methods for snapshot spectral imaging (SSI) systems utilizing Fabry-Perot filters. Unlike conventional approaches that perform unmixing after image restoration or demosaicing, our proposed methods leverage Fabry-Perot filter deconvolution and extend the “pure pixel” framework to the SSI sensor patch level, enabling improved unmixing accuracy and introducing the concept of localized spectral purity. Through extensive experimentation on synthetically generated data and real images captured by SSI cameras, we demonstrate the superiority of our methods over state-of-the-art techniques. Furthermore, our results showcase the effectiveness of the proposed approach over our recently proposed joint unmixing and demosaicing method based on low-rank matrix completion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部-反向-一的快照光谱图像联合解混和去马赛克方法。第二部分:基于滤波的框架
本文针对利用法布里-珀罗滤波器的快照光谱成像(SSI)系统提出了新颖的非混合和去马赛克方法。与在图像复原或去马赛克后执行解混的传统方法不同,我们提出的方法利用法布里-珀罗滤波器解卷积,并将 "纯像素 "框架扩展到 SSI 传感器补丁级,从而提高了解混精度,并引入了局部光谱纯度的概念。通过对合成数据和 SSI 相机拍摄的真实图像进行大量实验,我们证明了我们的方法优于最先进的技术。此外,我们的结果还展示了所提出的方法比我们最近提出的基于低秩矩阵补全的联合解混和去马赛克方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
期刊最新文献
IEEE Signal Processing Society Information List of Reviewers Ice-Tide: Implicit Cryo-ET Imaging and Deformation Estimation Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction FgC2F-UDiff: Frequency-Guided and Coarse-to-Fine Unified Diffusion Model for Multi-Modality Missing MRI Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1