{"title":"Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. Part II: A Filtering-Based Framework","authors":"Kinan Abbas;Matthieu Puigt;Gilles Delmaire;Gilles Roussel","doi":"10.1109/TCI.2024.3402441","DOIUrl":null,"url":null,"abstract":"This paper presents novel unmixing and demosaicing methods for snapshot spectral imaging (SSI) systems utilizing Fabry-Perot filters. Unlike conventional approaches that perform unmixing after image restoration or demosaicing, our proposed methods leverage Fabry-Perot filter deconvolution and extend the “pure pixel” framework to the SSI sensor patch level, enabling improved unmixing accuracy and introducing the concept of localized spectral purity. Through extensive experimentation on synthetically generated data and real images captured by SSI cameras, we demonstrate the superiority of our methods over state-of-the-art techniques. Furthermore, our results showcase the effectiveness of the proposed approach over our recently proposed joint unmixing and demosaicing method based on low-rank matrix completion.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"806-817"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535201/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents novel unmixing and demosaicing methods for snapshot spectral imaging (SSI) systems utilizing Fabry-Perot filters. Unlike conventional approaches that perform unmixing after image restoration or demosaicing, our proposed methods leverage Fabry-Perot filter deconvolution and extend the “pure pixel” framework to the SSI sensor patch level, enabling improved unmixing accuracy and introducing the concept of localized spectral purity. Through extensive experimentation on synthetically generated data and real images captured by SSI cameras, we demonstrate the superiority of our methods over state-of-the-art techniques. Furthermore, our results showcase the effectiveness of the proposed approach over our recently proposed joint unmixing and demosaicing method based on low-rank matrix completion.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.