{"title":"Immune checkpoint inhibitors: breakthroughs in cancer treatment.","authors":"Xueqing Kong, Jinyi Zhang, Shuwei Chen, Xianyang Wang, Qing Xi, Han Shen, Rongxin Zhang","doi":"10.20892/j.issn.2095-3941.2024.0055","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, immunotherapies have increasingly been considered as first-line treatments for most cancers. One such treatment is immune checkpoint blockade (ICB), which has demonstrated promising results against various solid tumors in clinical trials. Monoclonal antibodies (mAbs) are currently available as immune checkpoint inhibitors (ICIs). These ICIs target specific immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Clinical trial results strongly support the feasibility of this immunotherapeutic approach. However, a substantial proportion of patients with cancer develop resistance or tolerance to treatment, owing to tumor immune evasion mechanisms that counteract the host immune response. Consequently, substantial research focus has been aimed at identifying additional ICIs or synergistic inhibitory receptors to enhance the effectiveness of anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), and anti-CTLA-4 treatments. Recently, several immune checkpoint molecular targets have been identified, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT), mucin domain containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), V-domain immunoglobulin suppressor of T cell activation (VISTA), B and T lymphocyte attenuator (BTLA), and signal-regulatory protein α (SIRPα). Functional mAbs targeting these molecules are under development. CTLA-4, PD-1/PD-L1, and other recently discovered immune checkpoint proteins with distinct structures are at the forefront of research. This review discusses these structures, as well as clinical progress in mAbs targeting these immune checkpoint molecules and their potential applications.</p>","PeriodicalId":9611,"journal":{"name":"Cancer Biology & Medicine","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20892/j.issn.2095-3941.2024.0055","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past two decades, immunotherapies have increasingly been considered as first-line treatments for most cancers. One such treatment is immune checkpoint blockade (ICB), which has demonstrated promising results against various solid tumors in clinical trials. Monoclonal antibodies (mAbs) are currently available as immune checkpoint inhibitors (ICIs). These ICIs target specific immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Clinical trial results strongly support the feasibility of this immunotherapeutic approach. However, a substantial proportion of patients with cancer develop resistance or tolerance to treatment, owing to tumor immune evasion mechanisms that counteract the host immune response. Consequently, substantial research focus has been aimed at identifying additional ICIs or synergistic inhibitory receptors to enhance the effectiveness of anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), and anti-CTLA-4 treatments. Recently, several immune checkpoint molecular targets have been identified, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT), mucin domain containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), V-domain immunoglobulin suppressor of T cell activation (VISTA), B and T lymphocyte attenuator (BTLA), and signal-regulatory protein α (SIRPα). Functional mAbs targeting these molecules are under development. CTLA-4, PD-1/PD-L1, and other recently discovered immune checkpoint proteins with distinct structures are at the forefront of research. This review discusses these structures, as well as clinical progress in mAbs targeting these immune checkpoint molecules and their potential applications.
期刊介绍:
Cancer Biology & Medicine (ISSN 2095-3941) is a peer-reviewed open-access journal of Chinese Anti-cancer Association (CACA), which is the leading professional society of oncology in China. The journal quarterly provides innovative and significant information on biological basis of cancer, cancer microenvironment, translational cancer research, and all aspects of clinical cancer research. The journal also publishes significant perspectives on indigenous cancer types in China.