{"title":"Assessment of artificial intelligence to detect gasoline in fire debris using HS-SPME-GC/MS and transfer learning","authors":"Ting-Yu Huang MS, Jorn Chi Chung Yu PhD","doi":"10.1111/1556-4029.15550","DOIUrl":null,"url":null,"abstract":"<p>Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine-tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS-SPME-GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass-to-charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as “gasoline present” and “gasoline absent” classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15550","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine-tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS-SPME-GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass-to-charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as “gasoline present” and “gasoline absent” classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.