{"title":"Two-phase Hybrid Thermal Interface Alkali-treated E-Glass Fiber/MWCNT/Graphene/Copper Oxide Nanocomposites for Electronic Gadgets.","authors":"Swaminathan Ramu, Natarajan Senthilkumar, Balakrishnan Deepanraj","doi":"10.2174/0118722105296725240308094344","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Two-phase hybrid mode thermal interface materials were created and characterized for mechanical properties, thermal conductivity, and wear behaviour. Therefore, the ultimate goal of this current research was to use alkali-treated glass fibre and other allotropes to produce high-performance two-phase thermal interface materials that can be patented for engineering applications.</p><p><strong>Methods: </strong>Three different polymer composites were prepared to contain 20 vol.% alkalies (NaOH) treated e-glass fibre (E) and epoxy as a matrix with varying proportions of multi-walled carbon nanotube (MWCNT), graphene (G), copper oxide (C). The one-phase material contained epoxy+20%e-glass+1%MWCNT (EMGC1), the two-phase hybrid composite contained epoxy+20%e-glass+1%MWCNT+1%graphene+1%CuO (EMGC2), and two-phase material contained epoxy+20%e-glass+1%graphene+1%CuO (EMGC3). Vacuum bagging method was used for fabricating the composites.</p><p><strong>Results: </strong>The higher thermal conductivity observed was 0.3466 W/mK for EMGC2, the alkalitreated glass fibre/hybrid mode nanofillers epoxy matrix composite was mechanically tougher than the other two composites (EMGC1 & EMGC3). Scanning electron microscopy analysis revealed the fine filler dispersion and homogenous interaction with the glass fibre/epoxy resin composite of the upper and lower zone, which also revealed the defective zone, fibre elongation, fibre/filler breakages, and filler leached surfaces.</p><p><strong>Conclusion: </strong>Finally, it was concluded that the hybrid mode two-phased structure EMGC2 epoxy matrix composite replicated the maximum thermal conductivity, mechanical properties, and wear properties of the other two specimens.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"511-523"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105296725240308094344","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Two-phase hybrid mode thermal interface materials were created and characterized for mechanical properties, thermal conductivity, and wear behaviour. Therefore, the ultimate goal of this current research was to use alkali-treated glass fibre and other allotropes to produce high-performance two-phase thermal interface materials that can be patented for engineering applications.
Methods: Three different polymer composites were prepared to contain 20 vol.% alkalies (NaOH) treated e-glass fibre (E) and epoxy as a matrix with varying proportions of multi-walled carbon nanotube (MWCNT), graphene (G), copper oxide (C). The one-phase material contained epoxy+20%e-glass+1%MWCNT (EMGC1), the two-phase hybrid composite contained epoxy+20%e-glass+1%MWCNT+1%graphene+1%CuO (EMGC2), and two-phase material contained epoxy+20%e-glass+1%graphene+1%CuO (EMGC3). Vacuum bagging method was used for fabricating the composites.
Results: The higher thermal conductivity observed was 0.3466 W/mK for EMGC2, the alkalitreated glass fibre/hybrid mode nanofillers epoxy matrix composite was mechanically tougher than the other two composites (EMGC1 & EMGC3). Scanning electron microscopy analysis revealed the fine filler dispersion and homogenous interaction with the glass fibre/epoxy resin composite of the upper and lower zone, which also revealed the defective zone, fibre elongation, fibre/filler breakages, and filler leached surfaces.
Conclusion: Finally, it was concluded that the hybrid mode two-phased structure EMGC2 epoxy matrix composite replicated the maximum thermal conductivity, mechanical properties, and wear properties of the other two specimens.
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.