Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats.

IF 2.1 4区 医学 Q3 CHEMISTRY, MULTIDISCIPLINARY Drug and Chemical Toxicology Pub Date : 2024-11-01 Epub Date: 2024-05-28 DOI:10.1080/01480545.2024.2351191
Fatma Betül Yoladi, Saziye Sezin Palabiyik-Yucelik, Elham Bahador Zirh, Zekai Halici, Terken Baydar
{"title":"Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats.","authors":"Fatma Betül Yoladi, Saziye Sezin Palabiyik-Yucelik, Elham Bahador Zirh, Zekai Halici, Terken Baydar","doi":"10.1080/01480545.2024.2351191","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1β, IL-18, TGF-β, NF-κB, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1β pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1205-1217"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2351191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1β, IL-18, TGF-β, NF-κB, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1β pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
艾地苯醌和辅酶Q10对NLRP3/caspase-1/IL-1β通路调控乙醇诱导的大鼠肝毒性的影响
长期过量饮酒会导致肝中毒。酒精引起的肝损伤仍是全球肝脏相关疾病发病率和死亡率的主要原因,因此有必要研究有效的治疗策略来缓解酒精引起的肝损伤。因此,我们在此研究并评估了辅酶Q10(CoQ10)及其类似物艾地苯醌(IDE)对NLRP3/caspase-1/IL-1通路的影响。通过口服剂量逐渐增加的乙醇(2 至 6 克/千克/天),对大鼠进行为期 30 天的肝毒性诱导,并评估辅酶 Q10(10 或 20 毫克/千克)和 IDE(50 或 100 毫克/千克)的效果。评估了血清肝毒性指标(ALT、AST、GGT、ALP和TBIL)、组织氧化应激指标以及IL-1β、IL-18、TGF-β、NF-κB、NLRP3和caspase-1的mRNA表达。马森三色染色法也用于观察肝组织的纤维化。结果表明,乙醇暴露会导致肝脏毒性以及相当程度的NLRP3/caspase-1/IL-1β通路激活。此外,CoQ10 或 IDE 治疗以剂量依赖的方式降低了测量参数。因此,通过抑制NLRP3/caspase-1/IL-1途径,CoQ10和IDE可预防乙醇引起的肝毒性,但CoQ10比IDE更有效。这项研究将为利用 CoQ10 和 IDE 的抗炎和抗氧化特性治疗乙醇引起的肝病提供新的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug and Chemical Toxicology
Drug and Chemical Toxicology 医学-毒理学
CiteScore
6.00
自引率
3.80%
发文量
99
审稿时长
3 months
期刊介绍: Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal. Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.
期刊最新文献
Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Pre-clinical acute oral toxicity and subacute neurotoxicity risk assessments on sprague dawley rats treated with single dose or repeated doses of flavonoid-enriched fraction extracted from Oroxylum indicum leaves. In silico molecular docking and in vitro analysis of atomoxetine. Humic acid attenuates cisplatin-induced nephrotoxicity in rats. Novel chlorinated oxime K870 protects rats against paraoxon poisoning better than obidoxime.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1