Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).
Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough
{"title":"Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).","authors":"Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough","doi":"10.1177/00037028241256978","DOIUrl":null,"url":null,"abstract":"<p><p>We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241256978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.