Chongxiang Chen, Fei Tang, Felix J F Herth, Yingnan Zuo, Jiangtao Ren, Shuaiqi Zhang, Wenhua Jian, Chunli Tang, Shiyue Li
{"title":"Building and validating an artificial intelligence model to identify tracheobronchopathia osteochondroplastica by using bronchoscopic images.","authors":"Chongxiang Chen, Fei Tang, Felix J F Herth, Yingnan Zuo, Jiangtao Ren, Shuaiqi Zhang, Wenhua Jian, Chunli Tang, Shiyue Li","doi":"10.1177/17534666241253694","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Given the rarity of tracheobronchopathia osteochondroplastica (TO), many young doctors in primary hospitals are unable to identify TO based on bronchoscopy findings.</p><p><strong>Objectives: </strong>To build an artificial intelligence (AI) model for differentiating TO from other multinodular airway diseases by using bronchoscopic images.</p><p><strong>Design: </strong>We designed the study by comparing the imaging data of patients undergoing bronchoscopy from January 2010 to October 2022 by using EfficientNet. Bronchoscopic images of 21 patients with TO at Anhui Chest Hospital from October 2019 to October 2022 were collected for external validation.</p><p><strong>Methods: </strong>Bronchoscopic images of patients with multinodular airway lesions (including TO, amyloidosis, tumors, and inflammation) and without airway lesions in the First Affiliated Hospital of Guangzhou Medical University were collected. The images were randomized (4:1) into training and validation groups based on different diseases and utilized for deep learning by convolutional neural networks (CNNs).</p><p><strong>Results: </strong>We enrolled 201 patients with multinodular airway disease (38, 15, 75, and 73 patients with TO, amyloidosis, tumors, and inflammation, respectively) and 213 without any airway lesions. To find multinodular lesion images for deep learning, we utilized 2183 bronchoscopic images of multinodular lesions (including TO, amyloidosis, tumor, and inflammation) and compared them with images without any airway lesions (1733). The accuracy of multinodular lesion identification was 98.9%. Further, the accuracy of TO detection based on the bronchoscopic images of multinodular lesions was 89.2%. Regarding external validation (using images from 21 patients with TO), all patients could be diagnosed with TO; the accuracy was 89.8%.</p><p><strong>Conclusion: </strong>We built an AI model that could differentiate TO from other multinodular airway diseases (mainly amyloidosis, tumors, and inflammation) by using bronchoscopic images. The model could help young physicians identify this rare airway disease.</p>","PeriodicalId":22884,"journal":{"name":"Therapeutic Advances in Respiratory Disease","volume":"18 ","pages":"17534666241253694"},"PeriodicalIF":3.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Respiratory Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17534666241253694","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Given the rarity of tracheobronchopathia osteochondroplastica (TO), many young doctors in primary hospitals are unable to identify TO based on bronchoscopy findings.
Objectives: To build an artificial intelligence (AI) model for differentiating TO from other multinodular airway diseases by using bronchoscopic images.
Design: We designed the study by comparing the imaging data of patients undergoing bronchoscopy from January 2010 to October 2022 by using EfficientNet. Bronchoscopic images of 21 patients with TO at Anhui Chest Hospital from October 2019 to October 2022 were collected for external validation.
Methods: Bronchoscopic images of patients with multinodular airway lesions (including TO, amyloidosis, tumors, and inflammation) and without airway lesions in the First Affiliated Hospital of Guangzhou Medical University were collected. The images were randomized (4:1) into training and validation groups based on different diseases and utilized for deep learning by convolutional neural networks (CNNs).
Results: We enrolled 201 patients with multinodular airway disease (38, 15, 75, and 73 patients with TO, amyloidosis, tumors, and inflammation, respectively) and 213 without any airway lesions. To find multinodular lesion images for deep learning, we utilized 2183 bronchoscopic images of multinodular lesions (including TO, amyloidosis, tumor, and inflammation) and compared them with images without any airway lesions (1733). The accuracy of multinodular lesion identification was 98.9%. Further, the accuracy of TO detection based on the bronchoscopic images of multinodular lesions was 89.2%. Regarding external validation (using images from 21 patients with TO), all patients could be diagnosed with TO; the accuracy was 89.8%.
Conclusion: We built an AI model that could differentiate TO from other multinodular airway diseases (mainly amyloidosis, tumors, and inflammation) by using bronchoscopic images. The model could help young physicians identify this rare airway disease.
期刊介绍:
Therapeutic Advances in Respiratory Disease delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies across all areas of respiratory disease.