Salvia hispanica L. (chia) seed improves redox state and reverts extracellular matrix collagen deposition in skeletal muscle of sucrose-rich diet-fed rats.
Paola G Illesca, María Del R Ferreira, Adriana Benmelej, María Eugenia D'Alessandro
{"title":"Salvia hispanica L. (chia) seed improves redox state and reverts extracellular matrix collagen deposition in skeletal muscle of sucrose-rich diet-fed rats.","authors":"Paola G Illesca, María Del R Ferreira, Adriana Benmelej, María Eugenia D'Alessandro","doi":"10.1002/biof.2087","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle (SkM) is a plastic and dynamic tissue, essential in energy metabolism. Growing evidence suggests a close relationship between intramuscular fat accumulation, oxidative stress (OS), extracellular matrix (ECM) remodeling, and metabolic deregulation in SkM. Nowadays natural products emerge as promising alternatives for the treatment of metabolic disorders. We have previously shown that chia seed administration reverts SkM lipotoxicity and whole-body insulin resistant (IR) in sucrose-rich diet (SRD) fed rats. The purpose of the present study was to assess the involvement of OS and fibrosis in SkM metabolic impairment of insulin-resistant rats fed a long-term SRD and the effects of chia seed upon these mechanisms as therapeutic strategy. Results showed that insulin-resistant SRD-fed rats exhibited sarcopenia, increase in lipid peroxidation, altered redox state, and ECM remodeling-increased collagen deposition and lower activity of the metalloproteinase 2 (MMP-2) in SkM. Chia seed increased ferric ion reducing antioxidant power and glutathione reduced form levels, and the activities of glutathione peroxidase and glutathione reductase enzymes. Moreover, chia seed reversed fibrosis and restored the MMP-2 activity. This work reveals a participation of the OS and ECM remodeling in the metabolic alterations of SkM in our experimental model. Moreover, current data show novel properties of chia seed with the potential to attenuate SkM OS and fibrosis, hallmark of insulin-resistant muscle.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2087","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skeletal muscle (SkM) is a plastic and dynamic tissue, essential in energy metabolism. Growing evidence suggests a close relationship between intramuscular fat accumulation, oxidative stress (OS), extracellular matrix (ECM) remodeling, and metabolic deregulation in SkM. Nowadays natural products emerge as promising alternatives for the treatment of metabolic disorders. We have previously shown that chia seed administration reverts SkM lipotoxicity and whole-body insulin resistant (IR) in sucrose-rich diet (SRD) fed rats. The purpose of the present study was to assess the involvement of OS and fibrosis in SkM metabolic impairment of insulin-resistant rats fed a long-term SRD and the effects of chia seed upon these mechanisms as therapeutic strategy. Results showed that insulin-resistant SRD-fed rats exhibited sarcopenia, increase in lipid peroxidation, altered redox state, and ECM remodeling-increased collagen deposition and lower activity of the metalloproteinase 2 (MMP-2) in SkM. Chia seed increased ferric ion reducing antioxidant power and glutathione reduced form levels, and the activities of glutathione peroxidase and glutathione reductase enzymes. Moreover, chia seed reversed fibrosis and restored the MMP-2 activity. This work reveals a participation of the OS and ECM remodeling in the metabolic alterations of SkM in our experimental model. Moreover, current data show novel properties of chia seed with the potential to attenuate SkM OS and fibrosis, hallmark of insulin-resistant muscle.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.