Identification of peroneal artery perforators using non-contrast-enhanced T2prep multi-shot gradient echo planar imaging MRA.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-09-01 Epub Date: 2024-05-28 DOI:10.1007/s12194-024-00799-6
Yutaka Shigenaga, Takeo Osaki, Nobuyuki Murai, Saki Kamino, Koji Nakao, Ryohei Kawasaki, Daisuke Takenaka, Takayuki Ishida
{"title":"Identification of peroneal artery perforators using non-contrast-enhanced T2prep multi-shot gradient echo planar imaging MRA.","authors":"Yutaka Shigenaga, Takeo Osaki, Nobuyuki Murai, Saki Kamino, Koji Nakao, Ryohei Kawasaki, Daisuke Takenaka, Takayuki Ishida","doi":"10.1007/s12194-024-00799-6","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate the spatial resolution of non-contrast-enhanced (CE) T2prep multi-shot gradient echo planar imaging (MSG-EPI) magnetic resonance angiography (MRA) required to identify peroneal artery perforators and demonstrate its effectiveness in preoperative simulation. Twenty-six legs of 13 volunteers were scanned using non-CE T2prep MSG-EPI-MRA at three spatial resolutions: 1.0-, 0.8-, and 0.6-mm isotropic voxels. The location and number of peroneal artery perforators that could be candidates for free fibula flaps were identified by consensus among three plastic surgeons. Surgeons distinguished between septocutaneous and musculocutaneous perforators using MRA, and confirmed the accuracy of their presence and identification using ultrasonography (US). The ability to detect hypoplasia or stenosis of the anterior tibial, posterior tibial, and peroneal arteries was evaluated by confirming the consistency between the MRA and US results. The number of cutaneous perforators identified using MRA and confirmed using US was 39, 51, and 52 at each respective resolution. The discrimination accuracies between septocutaneous and musculocutaneous perforators were 92.3%, 96.1%, and 96.2%. The number of identified septocutaneous perforators was 1.3 ± 0.6, 1.6 ± 0.8, and 1.7 ± 0.8 at 1.0-, 0.8-, and 0.6-mm data, respectively. All the MRA results, including hypoplasia and stenosis, were consistent with the US results. Non-CE T2prep MSG-EPI-MRA with a spatial resolution of 0.8 mm or less shows promise for identifying septocutaneous perforators of the peroneal artery, suggesting its potential as an alternative to conventional imaging methods for the preoperative planning of free fibula osteocutaneous flap transfers.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"610-619"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00799-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to investigate the spatial resolution of non-contrast-enhanced (CE) T2prep multi-shot gradient echo planar imaging (MSG-EPI) magnetic resonance angiography (MRA) required to identify peroneal artery perforators and demonstrate its effectiveness in preoperative simulation. Twenty-six legs of 13 volunteers were scanned using non-CE T2prep MSG-EPI-MRA at three spatial resolutions: 1.0-, 0.8-, and 0.6-mm isotropic voxels. The location and number of peroneal artery perforators that could be candidates for free fibula flaps were identified by consensus among three plastic surgeons. Surgeons distinguished between septocutaneous and musculocutaneous perforators using MRA, and confirmed the accuracy of their presence and identification using ultrasonography (US). The ability to detect hypoplasia or stenosis of the anterior tibial, posterior tibial, and peroneal arteries was evaluated by confirming the consistency between the MRA and US results. The number of cutaneous perforators identified using MRA and confirmed using US was 39, 51, and 52 at each respective resolution. The discrimination accuracies between septocutaneous and musculocutaneous perforators were 92.3%, 96.1%, and 96.2%. The number of identified septocutaneous perforators was 1.3 ± 0.6, 1.6 ± 0.8, and 1.7 ± 0.8 at 1.0-, 0.8-, and 0.6-mm data, respectively. All the MRA results, including hypoplasia and stenosis, were consistent with the US results. Non-CE T2prep MSG-EPI-MRA with a spatial resolution of 0.8 mm or less shows promise for identifying septocutaneous perforators of the peroneal artery, suggesting its potential as an alternative to conventional imaging methods for the preoperative planning of free fibula osteocutaneous flap transfers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非对比度增强 T2prep 多拍梯度回波平面成像 MRA 鉴定腓动脉穿孔器。
本研究旨在调查非对比度增强(CE)T2prep 多拍梯度回波平面成像(MSG-EPI)磁共振血管成像(MRA)的空间分辨率,以确定腓动脉穿孔器,并证明其在术前模拟中的有效性。我们使用三种空间分辨率的非 CE T2prep MSG-EPI-MRA 扫描了 13 名志愿者的 26 条腿:1.0、0.8 和 0.6 毫米各向同性体素。通过三位整形外科医生的共识,确定了可用于游离腓骨瓣的腓动脉穿孔的位置和数量。外科医生使用 MRA 对隔皮穿孔器和肌皮穿孔器进行了区分,并使用超声波检查(US)确认了穿孔器的存在和识别的准确性。通过确认 MRA 和 US 结果的一致性,评估了检测胫前动脉、胫后动脉和腓动脉发育不良或狭窄的能力。在每个分辨率下,使用 MRA 发现并使用 US 确认的皮肤穿孔器数量分别为 39、51 和 52。隔肌穿孔器和肌皮穿孔器之间的鉴别准确率分别为 92.3%、96.1% 和 96.2%。在 1.0 毫米、0.8 毫米和 0.6 毫米数据下,识别出的隔皮穿孔器数量分别为 1.3 ± 0.6、1.6 ± 0.8 和 1.7 ± 0.8。所有 MRA 结果,包括低密度和狭窄,均与 US 结果一致。空间分辨率为 0.8 毫米或更低的非 CE T2prep MSG-EPI-MRA 显示出识别腓动脉隔膜穿孔器的前景,表明其有潜力替代传统成像方法,用于游离腓骨骨皮瓣转移的术前规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Acknowledgment. Evaluation of calculation accuracy and computation time in a commercial treatment planning system for accelerator-based boron neutron capture therapy. Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy. Effect of deep learning reconstruction on the assessment of pancreatic cystic lesions using computed tomography. Assessment of accuracy and repeatability of quantitative parameter mapping in MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1