In Silico Discovery and Predictive Modeling of Novel Acetylcholinesterase (AChE) Inhibitors for Alzheimer's Treatment.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Pub Date : 2024-05-27 DOI:10.2174/0115734064304100240511112619
Humaera Noor Suha, Md Shamim Hossain, Shofiur Rahman, Abdullah Alodhayb, Md Mainul Hossain, Sarkar M A Kawsar, Raymond Poirier, Kabir M Uddin
{"title":"In Silico Discovery and Predictive Modeling of Novel Acetylcholinesterase (AChE) Inhibitors for Alzheimer's Treatment.","authors":"Humaera Noor Suha, Md Shamim Hossain, Shofiur Rahman, Abdullah Alodhayb, Md Mainul Hossain, Sarkar M A Kawsar, Raymond Poirier, Kabir M Uddin","doi":"10.2174/0115734064304100240511112619","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease, akin to coronary artery disease of the heart, is a progressive brain disorder driven by nerve cell damage.</p><p><strong>Method: </strong>This study utilized computational methods to explore 14 anti-acetylcholinesterase (AChE) derivatives (1 ̶ 14) as potential treatments. By scrutinizing their interactions with 11 essential target proteins (AChE, Aβ, BChE, GSK-3β, MAO B, PDE-9, Prion, PSEN-1, sEH, Tau, and TDP-43) and comparing them with established drugs such as donepezil, galantamine, memantine, and rivastigmine, ligand 14 emerged as notable. During molecular dynamics simulations, the protein boasting the strongest bond with the critical 1QTI protein and exceeding drug-likeness criteria also exhibited remarkable stability within the enzyme's pocket across diverse temperatures (300 ̶ 320 K). In addition, we utilized density functional theory (DFT) to compute dipole moments and molecular orbital properties, including assessing the thermodynamic stability of AChE derivatives.</p><p><strong>Result: </strong>This finding suggests a welldefined, potentially therapeutic interaction further supported by theoretical and future in vitro and in vivo investigations.</p><p><strong>Conclusion: </strong>Ligand 14 thus emerges as a promising candidate in the fight against Alzheimer's disease.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064304100240511112619","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Alzheimer's disease, akin to coronary artery disease of the heart, is a progressive brain disorder driven by nerve cell damage.

Method: This study utilized computational methods to explore 14 anti-acetylcholinesterase (AChE) derivatives (1 ̶ 14) as potential treatments. By scrutinizing their interactions with 11 essential target proteins (AChE, Aβ, BChE, GSK-3β, MAO B, PDE-9, Prion, PSEN-1, sEH, Tau, and TDP-43) and comparing them with established drugs such as donepezil, galantamine, memantine, and rivastigmine, ligand 14 emerged as notable. During molecular dynamics simulations, the protein boasting the strongest bond with the critical 1QTI protein and exceeding drug-likeness criteria also exhibited remarkable stability within the enzyme's pocket across diverse temperatures (300 ̶ 320 K). In addition, we utilized density functional theory (DFT) to compute dipole moments and molecular orbital properties, including assessing the thermodynamic stability of AChE derivatives.

Result: This finding suggests a welldefined, potentially therapeutic interaction further supported by theoretical and future in vitro and in vivo investigations.

Conclusion: Ligand 14 thus emerges as a promising candidate in the fight against Alzheimer's disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于阿尔茨海默氏症治疗的新型乙酰胆碱酯酶 (AChE) 抑制剂的硅学发现和预测模型。
简介:老年痴呆症类似于心脏冠状动脉疾病,是一种由神经细胞损伤引起的渐进性脑部疾病:阿尔茨海默病与心脏冠状动脉疾病类似,是一种由神经细胞损伤引起的渐进性脑部疾病:本研究利用计算方法探索了 14 种抗乙酰胆碱酯酶(AChE)衍生物(1 ̶ 14)的潜在治疗方法。通过仔细研究它们与 11 种重要靶蛋白(AChE、Aβ、BChE、GSK-3β、MAO B、PDE-9、Prion、PSEN-1、sEH、Tau 和 TDP-43)的相互作用,并将它们与多奈哌齐、加兰他敏、美金刚和利巴斯的明等已有药物进行比较,配体 14 脱颖而出。在分子动力学模拟过程中,这种蛋白质与临界 1QTI 蛋白的结合力最强,超过了药物相似性标准,而且在不同温度(300 ̶ 320 K)下的酶袋中也表现出显著的稳定性。此外,我们还利用密度泛函理论(DFT)计算偶极矩和分子轨道特性,包括评估 AChE 衍生物的热力学稳定性:结果:这一发现表明存在一种定义明确、可能具有治疗作用的相互作用,并得到了理论研究以及未来体外和体内研究的进一步支持:配体 14 因此成为抗击阿尔茨海默病的有希望的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
期刊最新文献
Synergistic Warriors: Design and Synthesis of Dual-Acting Schiff-Based Threaded 1,2,3-Triazole Hybrids for Potent Antineoplastic and Anti-Mycobacterial Activities. Design, Synthesis, Characterization, and Antitumor Activities of Benzimidazole-functionalized Organoruthenium Complexes Bearing Fluorine Group. In silico Identification and Computational Screening of Potential AFP Inhibitors Against Liver Cancer. Unlocking the Biological Potential of 2-Pyridones: Synthesis, Antioxidant and Antimicrobial Activity of N-Phenacylated 5/6-Chloro-2-pyridones. Discovery of the PARP1 Inhibitors from Natural Compounds Using Structure-Based Virtual Screening and Bioactivity Evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1