{"title":"Research on Alzheimer's Disease (AD) Involving the Use of In vivo and In vitro Models and Mechanisms.","authors":"Sweta Sinha, Pranay Wal, Prakash Goudanavar, Surisetti Divya, Vishwadeepak Kimothi, Divya Jyothi, Mukesh Chandra Sharma, Ankita Wal","doi":"10.2174/0118715249293642240522054929","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the progressive formation of extracellular amyloid plaques, intracellular neurofibrillary tangles, inflammation, and impaired antioxidant systems. Early detection and intervention are vital for managing AD effectively.</p><p><strong>Objective: </strong>This review scrutinizes both in-vivo and in-vitro screening models employed in Alzheimer's disease research. In-vivo models, including transgenic mice expressing AD-related mutations, offer profound insights into disease progression and potential therapeutic targets. A thorough understanding of these models and mechanisms will facilitate the development of novel therapies and interventions for Alzheimer's disease. This review aims to provide an overview of the current experimental models in AD research, assess their strengths and weaknesses as model systems, and underscore the future prospects of experimental AD modeling.</p><p><strong>Methods: </strong>We conducted a systematic literature search across multiple databases, such as Pub- Med, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate. The search strategy incorporated pertinent keywords related to Alzheimer's disease, in-vivo models, in-vitro models, and screening mechanisms. Inclusion criteria were established to identify studies focused on in-vivo and in-vitro screening models and their mechanisms in Alzheimer's disease research. Studies not meeting the predefined criteria were excluded from the review.</p><p><strong>Results: </strong>A well-structured experimental animal model can yield significant insights into the neurobiology of AD, enhancing our comprehension of its pathogenesis and the potential for cutting-edge therapeutic strategies. Given the limited efficacy of current AD medications, there is a pressing need for the development of experimental models that can mimic the disease, particularly in pre-symptomatic stages, to investigate prevention and treatment approaches. To address this requirement, numerous experimental models replicating human AD pathology have been established, serving as invaluable tools for assessing potential treatments.</p><p><strong>Conclusion: </strong>In summary, this comprehensive review underscores the pivotal role of in-vivo and in-vitro screening models in advancing our understanding of Alzheimer's disease. These models offer invaluable insights into disease progression, pathological mechanisms, and potential therapeutic targets. By conducting a rigorous investigation and evaluation of these models and mechanisms, effective screening and treatment methods for Alzheimer's disease can be devised. The review also outlines future research directions and areas for enhancing AD screening models.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249293642240522054929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the progressive formation of extracellular amyloid plaques, intracellular neurofibrillary tangles, inflammation, and impaired antioxidant systems. Early detection and intervention are vital for managing AD effectively.
Objective: This review scrutinizes both in-vivo and in-vitro screening models employed in Alzheimer's disease research. In-vivo models, including transgenic mice expressing AD-related mutations, offer profound insights into disease progression and potential therapeutic targets. A thorough understanding of these models and mechanisms will facilitate the development of novel therapies and interventions for Alzheimer's disease. This review aims to provide an overview of the current experimental models in AD research, assess their strengths and weaknesses as model systems, and underscore the future prospects of experimental AD modeling.
Methods: We conducted a systematic literature search across multiple databases, such as Pub- Med, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate. The search strategy incorporated pertinent keywords related to Alzheimer's disease, in-vivo models, in-vitro models, and screening mechanisms. Inclusion criteria were established to identify studies focused on in-vivo and in-vitro screening models and their mechanisms in Alzheimer's disease research. Studies not meeting the predefined criteria were excluded from the review.
Results: A well-structured experimental animal model can yield significant insights into the neurobiology of AD, enhancing our comprehension of its pathogenesis and the potential for cutting-edge therapeutic strategies. Given the limited efficacy of current AD medications, there is a pressing need for the development of experimental models that can mimic the disease, particularly in pre-symptomatic stages, to investigate prevention and treatment approaches. To address this requirement, numerous experimental models replicating human AD pathology have been established, serving as invaluable tools for assessing potential treatments.
Conclusion: In summary, this comprehensive review underscores the pivotal role of in-vivo and in-vitro screening models in advancing our understanding of Alzheimer's disease. These models offer invaluable insights into disease progression, pathological mechanisms, and potential therapeutic targets. By conducting a rigorous investigation and evaluation of these models and mechanisms, effective screening and treatment methods for Alzheimer's disease can be devised. The review also outlines future research directions and areas for enhancing AD screening models.
背景:阿尔茨海默病(AD)是一种神经退行性疾病,其特征是细胞外淀粉样斑块、细胞内神经纤维缠结、炎症和抗氧化系统受损的逐渐形成。早期发现和干预对于有效控制 AD 至关重要:本综述仔细研究了阿尔茨海默病研究中使用的体内和体外筛选模型。体内模型,包括表达阿兹海默症相关突变的转基因小鼠,为疾病的进展和潜在的治疗靶点提供了深刻的见解。透彻了解这些模型和机制将有助于开发治疗阿尔茨海默病的新型疗法和干预措施。本综述旨在概述当前阿尔茨海默病研究中的实验模型,评估它们作为模型系统的优缺点,并强调阿尔茨海默病实验模型的未来前景:我们在 Pub-Med、Bentham Science、Elsevier、Springer Nature、Wiley 和 Research Gate 等多个数据库中进行了系统的文献检索。检索策略包括与阿尔茨海默病、体内模型、体外模型和筛选机制相关的关键词。制定了纳入标准,以确定有关阿尔茨海默病研究中体内和体外筛选模型及其机制的研究。不符合预定标准的研究被排除在综述之外:结果:结构合理的实验动物模型能让我们对阿尔茨海默病的神经生物学有更深入的了解,从而提高我们对其发病机理的认识,并挖掘出前沿治疗策略的潜力。鉴于目前的 AD 药物疗效有限,我们迫切需要开发能模拟该疾病的实验模型,尤其是在症状出现前的阶段,以研究预防和治疗方法。为了满足这一需求,已经建立了许多复制人类 AD 病理的实验模型,这些模型是评估潜在治疗方法的宝贵工具:总之,本综述强调了体内和体外筛选模型在促进我们对阿尔茨海默病的了解方面所起的关键作用。这些模型为我们深入了解疾病进展、病理机制和潜在治疗靶点提供了宝贵的资料。通过对这些模型和机制进行严格的调查和评估,可以设计出有效的阿尔茨海默病筛查和治疗方法。综述还概述了未来的研究方向和加强阿尔茨海默病筛查模型的领域。