Valentina S A Mella, Christine E Cooper, Madeline Karr, Andrew Krockenberger, George Madani, Elliot B Webb, Mark B Krockenberger
{"title":"Hot climate, hot koalas: the role of weather, behaviour and disease on thermoregulation.","authors":"Valentina S A Mella, Christine E Cooper, Madeline Karr, Andrew Krockenberger, George Madani, Elliot B Webb, Mark B Krockenberger","doi":"10.1093/conphys/coae032","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoregulation is critical for endotherms living in hot, dry conditions, and maintaining optimal core body temperature (<i>T</i><sub>b</sub>) in a changing climate is an increasingly challenging task for mammals. Koalas (<i>Phascolarctos cinereus</i>) have evolved physiological and behavioural strategies to maintain homeostasis and regulate their <i>T</i><sub>b</sub> but are thought to be vulnerable to prolonged heat. We investigated how weather, behaviour and disease influence <i>T</i><sub>b</sub> for wild, free-living koalas during summer in north-west New South Wales. We matched <i>T</i><sub>b</sub> with daily behavioural observations in an ageing population where chlamydial disease is prevalent. Each individual koala had similar <i>T</i><sub>b</sub> rhythms (average <i>T</i><sub>b</sub> = 36.4 ± 0.05°C), but male koalas had higher <i>T</i><sub>b</sub> amplitude and more pronounced daily rhythm than females. Disease disrupted the 24-hr circadian pattern of <i>T</i><sub>b</sub>. Koala <i>T</i><sub>b</sub> increased with ambient temperature (<i>T</i><sub>a</sub>). On the hottest day of the study (maximum <i>T</i><sub>a</sub> = 40.8°C), we recorded the highest (<i>T</i><sub>b</sub> = 40.8°C) but also the lowest (<i>T</i><sub>b</sub> = 32.4°C) <i>T</i><sub>b</sub> ever documented for wild koalas, suggesting that they are more heterothermic than previously recognized. This requires individuals to predict days of extreme <i>T</i><sub>a</sub> from overnight and early morning conditions, adjusting <i>T</i><sub>b</sub> regulation accordingly, and it has never been reported before for koalas. The large diel amplitude and low minimum <i>T</i><sub>b</sub> observed suggest that koalas at our study site are energetically and nutritionally compromised, likely due to their age. Behaviour (i.e. tree hugging and drinking water) was not effective in moderating <i>T</i><sub>b</sub>. These results indicate that <i>T</i><sub>a</sub> and koala <i>T</i><sub>b</sub> are strongly interconnected and reinforce the importance of climate projections for predicting the future persistence of koalas throughout their current distribution. Global climate models forecast that dry, hot weather will continue to escalate and drought events will increase in frequency, duration and severity. This is likely to push koalas and other arboreal folivores towards their thermal limit.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae032"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae032","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoregulation is critical for endotherms living in hot, dry conditions, and maintaining optimal core body temperature (Tb) in a changing climate is an increasingly challenging task for mammals. Koalas (Phascolarctos cinereus) have evolved physiological and behavioural strategies to maintain homeostasis and regulate their Tb but are thought to be vulnerable to prolonged heat. We investigated how weather, behaviour and disease influence Tb for wild, free-living koalas during summer in north-west New South Wales. We matched Tb with daily behavioural observations in an ageing population where chlamydial disease is prevalent. Each individual koala had similar Tb rhythms (average Tb = 36.4 ± 0.05°C), but male koalas had higher Tb amplitude and more pronounced daily rhythm than females. Disease disrupted the 24-hr circadian pattern of Tb. Koala Tb increased with ambient temperature (Ta). On the hottest day of the study (maximum Ta = 40.8°C), we recorded the highest (Tb = 40.8°C) but also the lowest (Tb = 32.4°C) Tb ever documented for wild koalas, suggesting that they are more heterothermic than previously recognized. This requires individuals to predict days of extreme Ta from overnight and early morning conditions, adjusting Tb regulation accordingly, and it has never been reported before for koalas. The large diel amplitude and low minimum Tb observed suggest that koalas at our study site are energetically and nutritionally compromised, likely due to their age. Behaviour (i.e. tree hugging and drinking water) was not effective in moderating Tb. These results indicate that Ta and koala Tb are strongly interconnected and reinforce the importance of climate projections for predicting the future persistence of koalas throughout their current distribution. Global climate models forecast that dry, hot weather will continue to escalate and drought events will increase in frequency, duration and severity. This is likely to push koalas and other arboreal folivores towards their thermal limit.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.