Shape of scaffold controlling the direction of cell migration.

IF 1.6 Q4 BIOPHYSICS Biophysics and physicobiology Pub Date : 2023-12-29 eCollection Date: 2024-01-01 DOI:10.2142/biophysico.bppb-v21.0004
Hiroshi Sunami, Yusuke Shimizu, Hidehiro Kishimoto
{"title":"Shape of scaffold controlling the direction of cell migration.","authors":"Hiroshi Sunami, Yusuke Shimizu, Hidehiro Kishimoto","doi":"10.2142/biophysico.bppb-v21.0004","DOIUrl":null,"url":null,"abstract":"<p><p>Cell migration plays an important role in the development and maintenance of multicellular organisms. Factors that induce cell migration and mechanisms controlling their expression are important for determining the mechanisms of factor-induced cell migration. Despite progress in the study of factor-induced cytotaxis, including chemotaxis and haptotaxis, precise control of the direction of cell migration over a wide area has not yet been achieved. Success in this area would update the cell migration assays, superior cell separation technologies, and artificial organs with high biocompatibility. The present study therefore sought to control the direction of cell migration over a wide area by adjusting the three-dimensional shape of the cell scaffold. The direction of cell migration was influenced by the shape of the cell scaffold, thereby optimizing cell adhesion and protrusion. Anisotropic arrangement of these three-dimensional shapes into a periodic structure induced unidirectional cell migration. Three factors were required for unidirectional cell migration: 1) the sizes of the anisotropic periodic structures had to be equal to or lower than the size of the spreading cells, 2) cell migration was restricted to a runway approximately the width of the cell, and 3) cells had to be prone to extension of long protrusions in one direction. Because the first two factors had been identified previously in studies of cell migration in one direction using two-dimensional shaped patterns, these three factors are likely important for the mechanism by which cell scaffold shapes regulate cell migration.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 1","pages":"e210004"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell migration plays an important role in the development and maintenance of multicellular organisms. Factors that induce cell migration and mechanisms controlling their expression are important for determining the mechanisms of factor-induced cell migration. Despite progress in the study of factor-induced cytotaxis, including chemotaxis and haptotaxis, precise control of the direction of cell migration over a wide area has not yet been achieved. Success in this area would update the cell migration assays, superior cell separation technologies, and artificial organs with high biocompatibility. The present study therefore sought to control the direction of cell migration over a wide area by adjusting the three-dimensional shape of the cell scaffold. The direction of cell migration was influenced by the shape of the cell scaffold, thereby optimizing cell adhesion and protrusion. Anisotropic arrangement of these three-dimensional shapes into a periodic structure induced unidirectional cell migration. Three factors were required for unidirectional cell migration: 1) the sizes of the anisotropic periodic structures had to be equal to or lower than the size of the spreading cells, 2) cell migration was restricted to a runway approximately the width of the cell, and 3) cells had to be prone to extension of long protrusions in one direction. Because the first two factors had been identified previously in studies of cell migration in one direction using two-dimensional shaped patterns, these three factors are likely important for the mechanism by which cell scaffold shapes regulate cell migration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制细胞迁移方向的支架形状。
细胞迁移在多细胞生物体的发育和维持过程中发挥着重要作用。诱导细胞迁移的因子及其表达控制机制对于确定因子诱导细胞迁移的机制非常重要。尽管对因子诱导的细胞趋向性(包括趋化性和趋向性)的研究取得了进展,但尚未实现对细胞大范围迁移方向的精确控制。这一领域的成功将更新细胞迁移实验、卓越的细胞分离技术和具有高生物相容性的人工器官。因此,本研究试图通过调整细胞支架的三维形状来控制大面积的细胞迁移方向。细胞迁移的方向受细胞支架形状的影响,从而优化细胞的粘附和突起。将这些三维形状各向异性地排列成周期性结构可诱导细胞单向迁移。细胞单向迁移需要三个因素:1)各向异性周期性结构的大小必须等于或小于扩散细胞的大小;2)细胞迁移被限制在与细胞宽度相近的跑道上;3)细胞必须容易向一个方向延伸长突起。由于前两个因素是以前利用二维形状模式研究细胞单向迁移时发现的,因此这三个因素可能是细胞支架形状调节细胞迁移的重要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Chemical tongues as multipurpose bioanalytical tools for the characterization of complex biological samples. Unraveling the fastest myosin: Discovery history and structure-function relationships of algae Chara myosin XI. Internal structure of Mycoplasma mobile gliding machinery analyzed by negative staining electron tomography. Application of single-molecule analysis to singularity phenomenon of cells. X-ray diffraction recording from a small amount of fibrous protein materials oriented by a micro shear-flow cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1