{"title":"Complement receptor 3-dependent engagement by <i>Candida glabrata</i> β-glucan modulates dendritic cells to induce regulatory T-cell expansion.","authors":"Areerat Kunanopparat, Truc Thi Huong Dinh, Pranpariya Ponpakdee, Panuwat Padungros, Warerat Kaewduangduen, Kasirapat Ariya-Anandech, Phawida Tummamunkong, Amanee Samaeng, Pannagorn Sae-Ear, Asada Leelahavanichkul, Nattiya Hirankarn, Patcharee Ritprajak","doi":"10.1098/rsob.230315","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida glabrata</i> is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of <i>Candida</i> eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting <i>Candida</i> pathogenicity. To date, how <i>C. glabrata</i> induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between <i>C. glabrata</i> and DCs and its effect on Treg induction. We found that <i>C. glabrata</i> β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of <i>C. glabrata</i> β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of <i>C. glabrata</i> β-glucan to CR3. Our data suggest that <i>C. glabrata</i> β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by <i>C. glabrata</i> that may lead to a better design of novel immunotherapeutic strategies for invasive <i>C. glabrata</i> infection.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 5","pages":"230315"},"PeriodicalIF":4.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.230315","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata β-glucan to CR3. Our data suggest that C. glabrata β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.