Advances in Exosome-Based Therapies for the Repair of Peripheral Nerve Injuries.

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2024-08-01 Epub Date: 2024-05-28 DOI:10.1007/s11064-024-04157-1
Sana Rahimian, Hossein Najafi, Christine A Webber, Hanieh Jalali
{"title":"Advances in Exosome-Based Therapies for the Repair of Peripheral Nerve Injuries.","authors":"Sana Rahimian, Hossein Najafi, Christine A Webber, Hanieh Jalali","doi":"10.1007/s11064-024-04157-1","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries (PNIs) are the term used to describe injuries that occur to the nerve fibers of the peripheral nervous system (PNS). Such injuries may be caused by trauma, infection, or aberrant immunological response. Although the peripheral nervous system has a limited capacity for self-repair, in cases of severe damage, this process is either interrupted entirely or is only partially completed. The evaluation of variables that promote the repair of peripheral nerves has consistently been a focal point. Exosomes are a subtype of extracellular vesicles that originate from cellular sources and possess abundant proteins, lipids, and nucleic acids, play a critical role in facilitating intercellular communication. Due to their modifiable composition, they possess exceptional capabilities as carriers for therapeutic compounds, including but not limited to mRNAs or microRNAs. Exosome-based therapies have gained significant attention in the treatment of several nervous system diseases due to their advantageous properties, such as low toxicity, high stability, and limited immune system activation. The objective of this review article is to provide an overview of exosome-based treatments that have been developed in recent years for a range of PNIs, including nerve trauma, diabetic neuropathy, amyotrophic lateral sclerosis (ALS), glaucoma, and Guillain-Barre syndrome (GBS). It was concluded that exosomes could provide favorable results in the improvement of peripheral PNIs by facilitating the transfer of regenerative factors. The development of bioengineered exosome therapy for PNIs should be given more attention to enhance the efficacy of exosome treatment for PNIs.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11064-024-04157-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peripheral nerve injuries (PNIs) are the term used to describe injuries that occur to the nerve fibers of the peripheral nervous system (PNS). Such injuries may be caused by trauma, infection, or aberrant immunological response. Although the peripheral nervous system has a limited capacity for self-repair, in cases of severe damage, this process is either interrupted entirely or is only partially completed. The evaluation of variables that promote the repair of peripheral nerves has consistently been a focal point. Exosomes are a subtype of extracellular vesicles that originate from cellular sources and possess abundant proteins, lipids, and nucleic acids, play a critical role in facilitating intercellular communication. Due to their modifiable composition, they possess exceptional capabilities as carriers for therapeutic compounds, including but not limited to mRNAs or microRNAs. Exosome-based therapies have gained significant attention in the treatment of several nervous system diseases due to their advantageous properties, such as low toxicity, high stability, and limited immune system activation. The objective of this review article is to provide an overview of exosome-based treatments that have been developed in recent years for a range of PNIs, including nerve trauma, diabetic neuropathy, amyotrophic lateral sclerosis (ALS), glaucoma, and Guillain-Barre syndrome (GBS). It was concluded that exosomes could provide favorable results in the improvement of peripheral PNIs by facilitating the transfer of regenerative factors. The development of bioengineered exosome therapy for PNIs should be given more attention to enhance the efficacy of exosome treatment for PNIs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于外泌体的外周神经损伤修复疗法的进展。
周围神经损伤(PNIs)是指发生在周围神经系统(PNS)神经纤维上的损伤。此类损伤可能由创伤、感染或异常免疫反应引起。尽管周围神经系统的自我修复能力有限,但在严重损伤的情况下,这一过程要么完全中断,要么只能部分完成。对促进周围神经修复的变量进行评估一直是一个焦点。外泌体是细胞外囊泡的一种亚型,来源于细胞,含有丰富的蛋白质、脂类和核酸,在促进细胞间通信方面发挥着关键作用。由于外泌体的组成可以改变,因此具有作为治疗化合物(包括但不限于 mRNA 或 microRNA)载体的特殊能力。由于外泌体具有低毒性、高稳定性和有限的免疫系统激活等优势特性,它在治疗多种神经系统疾病方面受到了广泛关注。这篇综述文章的目的是概述近年来针对神经创伤、糖尿病神经病变、肌萎缩性脊髓侧索硬化症(ALS)、青光眼和格林-巴利综合征(GBS)等一系列神经系统疾病开发的基于外泌体的疗法。研究认为,外泌体可通过促进再生因子的转移,在改善外周神经损伤方面取得良好效果。为提高外泌体治疗 PNIs 的疗效,应更加重视开发用于 PNIs 的生物工程外泌体疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Correction: HDAC1 Promotes Mitochondrial Pathway Apoptosis and Inhibits the Endoplasmic Reticulum Stress Response in High Glucose-Treated Schwann Cells via Decreased U4 Spliceosomal RNA. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. HDAC1 Promotes Mitochondrial Pathway Apoptosis and Inhibits the Endoplasmic Reticulum Stress Response in High Glucose-Treated Schwann Cells via Decreased U4 Spliceosomal RNA. Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. Ketogenic Diets Alter the Gut Microbiome, Resulting in Decreased Susceptibility to and Cognitive Impairment in Rats with Pilocarpine-Induced Status Epilepticus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1