Biodegradation of phthalic acid and terephthalic acid by Comamonas testosteroni strains.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-12-01 Epub Date: 2024-05-29 DOI:10.1007/s12223-024-01176-x
Caner Vural, Hamza Ettadili
{"title":"Biodegradation of phthalic acid and terephthalic acid by Comamonas testosteroni strains.","authors":"Caner Vural, Hamza Ettadili","doi":"10.1007/s12223-024-01176-x","DOIUrl":null,"url":null,"abstract":"<p><p>Phthalic acid isomers are the monomers of phthalate molecules, also known as phthalic acid esters, widely employed in the plastics industry. This study aims to investigate the biodegradation of phthalic acid (PA) and terephthalic acid (TPA) by five industry-borne Comamonas testosteroni strains: 3APTOL, 3ABBK, 2B, 3A1, and C8. To assess the ability of C. testosteroni strains to biodegrade phthalic acid isomers in fermentation media, an analytical method was employed, consisting of high-performance liquid chromatography (HPLC) analyses. Subsequently, molecular screening of the genomic and plasmid DNA was conducted to identify the degradative genes responsible for the breakdown of these chemicals. The genes of interest, including ophA2, tphA2, tphA3, pmdA, and pmdB, were screened by real-time PCR. The five C. testosteroni strains effectively degraded 100% of 100 mg/L PA (p = 0.033) and TPA (p = 0.0114). Molecular analyses indicated that all C. testosteroni strains contained the pertinent genes at different levels within their genomes and plasmids, as reflected in the threshold cycle (Ct) values. Additionally, DNA temperature of melting (Tm) analyses uncovered minor differences between groups of genes in genomic and plasmid DNA. C. testosteroni strains could be excellent candidates for the removal of phthalic acid isomers from environmental systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-024-01176-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Phthalic acid isomers are the monomers of phthalate molecules, also known as phthalic acid esters, widely employed in the plastics industry. This study aims to investigate the biodegradation of phthalic acid (PA) and terephthalic acid (TPA) by five industry-borne Comamonas testosteroni strains: 3APTOL, 3ABBK, 2B, 3A1, and C8. To assess the ability of C. testosteroni strains to biodegrade phthalic acid isomers in fermentation media, an analytical method was employed, consisting of high-performance liquid chromatography (HPLC) analyses. Subsequently, molecular screening of the genomic and plasmid DNA was conducted to identify the degradative genes responsible for the breakdown of these chemicals. The genes of interest, including ophA2, tphA2, tphA3, pmdA, and pmdB, were screened by real-time PCR. The five C. testosteroni strains effectively degraded 100% of 100 mg/L PA (p = 0.033) and TPA (p = 0.0114). Molecular analyses indicated that all C. testosteroni strains contained the pertinent genes at different levels within their genomes and plasmids, as reflected in the threshold cycle (Ct) values. Additionally, DNA temperature of melting (Tm) analyses uncovered minor differences between groups of genes in genomic and plasmid DNA. C. testosteroni strains could be excellent candidates for the removal of phthalic acid isomers from environmental systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comamonas testosteroni 菌株对邻苯二甲酸和对苯二甲酸的生物降解。
邻苯二甲酸异构体是邻苯二甲酸酯分子的单体,也称为邻苯二甲酸酯,广泛应用于塑料工业。本研究旨在调查五种工业生产的 Comamonas testosteroni 菌株对邻苯二甲酸(PA)和对苯二甲酸(TPA)的生物降解情况:3APTOL、3ABBK、2B、3A1 和 C8。为了评估 C. testosteroni 菌株在发酵培养基中生物降解邻苯二甲酸异构体的能力,采用了一种分析方法,包括高效液相色谱(HPLC)分析。随后,对基因组和质粒 DNA 进行了分子筛选,以确定负责分解这些化学物质的降解基因。通过实时聚合酶链式反应(real-time PCR)筛选了包括ophA2、tphA2、tphA3、pmdA和pmdB在内的相关基因。五株 C. testosteroni 有效降解了 100 mg/L PA(p = 0.033)和 TPA(p = 0.0114)。分子分析表明,所有 C. testosteroni 菌株的基因组和质粒中都含有不同水平的相关基因,这反映在阈值周期(Ct)值上。此外,DNA 熔解温度(Tm)分析也发现了基因组和质粒 DNA 中各组基因之间的细微差别。C. testosteroni 菌株可能是从环境系统中去除邻苯二甲酸异构体的极佳候选菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1