Estimating statistical power for structural equation models in developmental cognitive science: A tutorial in R : Power simulation for SEMs.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-10-01 Epub Date: 2024-05-28 DOI:10.3758/s13428-024-02396-2
Elisa S Buchberger, Chi T Ngo, Aaron Peikert, Andreas M Brandmaier, Markus Werkle-Bergner
{"title":"Estimating statistical power for structural equation models in developmental cognitive science: A tutorial in R : Power simulation for SEMs.","authors":"Elisa S Buchberger, Chi T Ngo, Aaron Peikert, Andreas M Brandmaier, Markus Werkle-Bergner","doi":"10.3758/s13428-024-02396-2","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the compositional structure and dimensionality of psychological constructs lies at the heart of many research questions in developmental science. Structural equation modeling (SEM) provides a versatile framework for formalizing and estimating the relationships among multiple latent constructs. While the flexibility of SEM can accommodate many complex assumptions on the underlying structure of psychological constructs, it makes a priori estimation of statistical power and required sample size challenging. This difficulty is magnified when comparing non-nested SEMs, which prevents the use of traditional likelihood-ratio tests. Sample size estimates for SEM model fit comparisons typically rely on generic rules of thumb. Such heuristics can be misleading because statistical power in SEM depends on a variety of model properties. Here, we demonstrate a Monte Carlo simulation approach for estimating a priori statistical power for model selection when comparing non-nested models in an SEM framework. We provide a step-by-step guide to this approach based on an example from our memory development research in children.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02396-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the compositional structure and dimensionality of psychological constructs lies at the heart of many research questions in developmental science. Structural equation modeling (SEM) provides a versatile framework for formalizing and estimating the relationships among multiple latent constructs. While the flexibility of SEM can accommodate many complex assumptions on the underlying structure of psychological constructs, it makes a priori estimation of statistical power and required sample size challenging. This difficulty is magnified when comparing non-nested SEMs, which prevents the use of traditional likelihood-ratio tests. Sample size estimates for SEM model fit comparisons typically rely on generic rules of thumb. Such heuristics can be misleading because statistical power in SEM depends on a variety of model properties. Here, we demonstrate a Monte Carlo simulation approach for estimating a priori statistical power for model selection when comparing non-nested models in an SEM framework. We provide a step-by-step guide to this approach based on an example from our memory development research in children.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算发展认知科学中结构方程模型的统计幂:R 语言教程:SEM 的幂模拟。
确定心理建构的组成结构和维度是发展科学中许多研究问题的核心。结构方程建模(SEM)为正式确定和估计多个潜在建构之间的关系提供了一个通用框架。虽然结构方程模型的灵活性可以容纳许多关于心理建构基础结构的复杂假设,但它对统计能力和所需样本量的先验估计具有挑战性。在比较非嵌套的 SEM 时,这种困难就会被放大,从而无法使用传统的似然比检验。SEM 模型拟合比较的样本量估计通常依赖于通用的经验法则。这种启发式方法可能会产生误导,因为 SEM 的统计能力取决于各种模型属性。在此,我们展示了一种蒙特卡罗模拟方法,用于在 SEM 框架下比较非嵌套模型时,估计用于模型选择的先验统计能力。我们以儿童记忆力发展研究为例,逐步介绍了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1