Karla Giavarini Gnocchi, Larissa Souza Passos, Tatiana Miura Pereira, Gabriel Carvalho Coppo, Letícia Alves de Souza, Barbara Chisté Teixeira, Adriana Regina Chippari-Gomes
{"title":"Biochemical changes and bioaccumulation of manganese in Astyanax lacustris (Teleostei: Characidae).","authors":"Karla Giavarini Gnocchi, Larissa Souza Passos, Tatiana Miura Pereira, Gabriel Carvalho Coppo, Letícia Alves de Souza, Barbara Chisté Teixeira, Adriana Regina Chippari-Gomes","doi":"10.1007/s10646-024-02765-9","DOIUrl":null,"url":null,"abstract":"<p><p>Major tailings dam failures have occurred recently around the world and resulted in severe environmental impacts, such as metal contamination. Manganese is a metal highly associated with mining activities, largely detected in mining dam collapses. This metal is considered necessary for different organisms, but it can be toxic and cause oxidative stress and genetic damage in fishes. In this study, we investigated the toxic effects of manganese on Astyanax lacustris, by exposing the fish individually to different concentrations of this metal (2.11, 5.00, and 10.43 mg/L) for 96 h. To assess the effects of manganese, we used biochemical biomarkers (glutathione S-transferase, catalase, and acetylcholinesterase enzyme activity) and the manganese bioaccumulation in different tissues (liver and gills). The obtained data showed that only at concentrations of 5.00 mg/L and 10.43 mg/L the activity of glutathione S-transferase differed significantly. Additionally, the acetylcholinesterase activity in the brain tissue was inhibited. The highest level of manganese bioaccumulation was observed in the liver and branchial tissue. Overall, we concluded that high concentrations of manganese may cause physiological changes in Astyanax lacustris.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"677-682"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02765-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Major tailings dam failures have occurred recently around the world and resulted in severe environmental impacts, such as metal contamination. Manganese is a metal highly associated with mining activities, largely detected in mining dam collapses. This metal is considered necessary for different organisms, but it can be toxic and cause oxidative stress and genetic damage in fishes. In this study, we investigated the toxic effects of manganese on Astyanax lacustris, by exposing the fish individually to different concentrations of this metal (2.11, 5.00, and 10.43 mg/L) for 96 h. To assess the effects of manganese, we used biochemical biomarkers (glutathione S-transferase, catalase, and acetylcholinesterase enzyme activity) and the manganese bioaccumulation in different tissues (liver and gills). The obtained data showed that only at concentrations of 5.00 mg/L and 10.43 mg/L the activity of glutathione S-transferase differed significantly. Additionally, the acetylcholinesterase activity in the brain tissue was inhibited. The highest level of manganese bioaccumulation was observed in the liver and branchial tissue. Overall, we concluded that high concentrations of manganese may cause physiological changes in Astyanax lacustris.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.