Acrolein-triggered atherosclerosis via AMPK/SIRT1-CLOCK/BMAL1 pathway and a protection from intermittent fasting.

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Biomedical Research Pub Date : 2024-05-25 DOI:10.7555/JBR.38.20240025
Qianfeng Chen, Yuxia Zhong, Bohan Li, Yucong Feng, Yuandie Zhang, Tao Wei, Margaret Zaitoun, Shuang Rong, Hua Wan, Qing Feng
{"title":"Acrolein-triggered atherosclerosis <i>via</i> AMPK/SIRT1-CLOCK/BMAL1 pathway and a protection from intermittent fasting.","authors":"Qianfeng Chen, Yuxia Zhong, Bohan Li, Yucong Feng, Yuandie Zhang, Tao Wei, Margaret Zaitoun, Shuang Rong, Hua Wan, Qing Feng","doi":"10.7555/JBR.38.20240025","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian clock plays a vital role in the pathological progression of cardiovascular disease (CVD). Our previous studies showed that acrolein, an environmental pollutant, promoted atherosclerosis by reducing CLOCK/BMAL1 and disturbing circadian rhythm. Whereas, intermittent fasting (IF), a diet pattern, was able to ameliorate acrolein-induced atherosclerosis. <i>In vivo</i>, mice were fed acrolein 3 mg/kg/day <i>via</i> drinking water and IF for 18h (0:00-18:00). We observed that IF decreased acrolein-accelerated the formation of aortic lesion in <i>ApoE</i> <sup>-/-</sup> mice. Up-regulation of <i>NF-κB, IL-1β</i> and <i>TNF-α</i> levels were found in liver and heart tissue upon acrolein exposure, while was down-regulated by IF. Interestingly, IF treatment exhibited higher AMPK, p-AMPK and SIRT1and lower MAPK expression which was caused by acrolein. Besides, circadian genes <i>Clock/ Bmal1</i> expression were suppressed and disturbed treated with acrolein, while were reversed by IF. Furthermore, consistent with that <i>in vivo</i>, short-term starvation as a fasting cell model <i>in vitro</i> could improve the disorders of CLOCK/BMAL1 and raised SIRT1 <i>via</i> regulating AMPK, as well as ROS-MAPK induced by acrolein. In conclusion, we demonstrated that IF repressed ROS-MAPK while activated AMPK to elevate the expression of circadian clock genes to ameliorate acrolein-induced atherogenesis, which shed a novel light to prevent cardiovascular diseases.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.38.20240025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Circadian clock plays a vital role in the pathological progression of cardiovascular disease (CVD). Our previous studies showed that acrolein, an environmental pollutant, promoted atherosclerosis by reducing CLOCK/BMAL1 and disturbing circadian rhythm. Whereas, intermittent fasting (IF), a diet pattern, was able to ameliorate acrolein-induced atherosclerosis. In vivo, mice were fed acrolein 3 mg/kg/day via drinking water and IF for 18h (0:00-18:00). We observed that IF decreased acrolein-accelerated the formation of aortic lesion in ApoE -/- mice. Up-regulation of NF-κB, IL-1β and TNF-α levels were found in liver and heart tissue upon acrolein exposure, while was down-regulated by IF. Interestingly, IF treatment exhibited higher AMPK, p-AMPK and SIRT1and lower MAPK expression which was caused by acrolein. Besides, circadian genes Clock/ Bmal1 expression were suppressed and disturbed treated with acrolein, while were reversed by IF. Furthermore, consistent with that in vivo, short-term starvation as a fasting cell model in vitro could improve the disorders of CLOCK/BMAL1 and raised SIRT1 via regulating AMPK, as well as ROS-MAPK induced by acrolein. In conclusion, we demonstrated that IF repressed ROS-MAPK while activated AMPK to elevate the expression of circadian clock genes to ameliorate acrolein-induced atherogenesis, which shed a novel light to prevent cardiovascular diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丙烯醛通过 AMPK/SIRT1-CLOCK/BMAL1 通路诱发动脉粥样硬化以及间歇性禁食的保护作用
昼夜节律在心血管疾病(CVD)的病理过程中起着至关重要的作用。我们之前的研究表明,环境污染物丙烯醛通过降低CLOCK/BMAL1和扰乱昼夜节律促进动脉粥样硬化。而间歇性禁食(IF)这种饮食模式能够改善丙烯醛诱导的动脉粥样硬化。在体内,小鼠通过饮水和间歇性禁食 18 小时(0:00-18:00),每天摄入 3 毫克/千克的丙烯醛。我们观察到,IF能减少丙烯醛加速载脂蛋白E -/-小鼠主动脉病变的形成。暴露于丙烯醛后,肝脏和心脏组织中的 NF-κB、IL-1β 和 TNF-α 水平上调,而 IF 则下调。有趣的是,IF 处理后,AMPK、p-AMPK 和 SIRT1 的表达量增加,而 MAPK 的表达量则降低,这是由丙烯醛引起的。此外,昼夜节律基因 Clock/ Bmal1 的表达在丙烯醛的作用下受到抑制和干扰,而在 IF 的作用下则得到逆转。此外,与体内情况一致,体外短期饥饿作为一种禁食细胞模型,可通过调节 AMPK 以及丙烯醛诱导的 ROS-MAPK 改善 CLOCK/BMAL1 的紊乱并提高 SIRT1。总之,我们证明了 IF 可抑制 ROS-MAPK,同时激活 AMPK 以提高昼夜节律时钟基因的表达,从而改善丙烯醛诱导的动脉粥样硬化,这为预防心血管疾病带来了新的曙光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Research
Journal of Biomedical Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
4.60
自引率
0.00%
发文量
69
期刊最新文献
AdipoR1 promotes pathogenic Th17 differentiation by regulating mitochondrial function through FUNDC1. Metabolic profiling identifies potential biomarkers associated with progression from gestational diabetes mellitus to prediabetes postpartum. Hepatic SIRT6 protects against cholestatic liver disease primarily via inhibiting bile acid synthesis. LncRNA LINC01503 promotes angiogenesis in colorectal cancer by regulating VEGFA expression via miR-342-3p and HSP60 binding. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1