Arabidopsis Sar1b is critical for pollen tube growth.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2024-05-29 DOI:10.1007/s11103-024-01466-5
Xin Liang, Shi-Hao Zhu, Qiang-Nan Feng, Sha Li, Yan Zhang
{"title":"Arabidopsis Sar1b is critical for pollen tube growth.","authors":"Xin Liang, Shi-Hao Zhu, Qiang-Nan Feng, Sha Li, Yan Zhang","doi":"10.1007/s11103-024-01466-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01466-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥 Sar1b 对花粉管的生长至关重要。
花粉管的生长是开花植物获得繁殖成功的重要步骤,其中囊泡的运输起着关键作用。从内质网到高尔基体的囊泡运输是由外壳蛋白复合体 II(COPII)介导的。COPII 的一个关键组成部分是小 GTPase Sar1。拟南芥基因组中编码了五种 Sar1 异构体,它们在各种细胞和发育过程中,特别是在繁殖过程中,显示出不同但又多余的作用。拟南芥的 Sar1b 对孢子体控制花粉发育至关重要,而 Sar1b 和 Sar1c 则对配子体控制花粉发育至关重要。由于 Sar1b 和 Sar1c 的功能缺失会导致花粉流产,因此它们是否会影响花粉管的生长尚不清楚。在这里,我们证明 Sar1b 除了在花粉发育中发挥作用外,还能介导花粉管的生长。虽然 Sar1b 的功能缺失不会影响花粉的萌发,但会导致雄性传递和花粉管穿透花柱的能力显著下降。我们进一步发现,花粉管顶端的膜动力学会因 Sar1b 功能缺失而受到影响。这些结果进一步证明了 Sar1 异构体功能的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare. Improving organoleptic and antioxidant properties by inhibition of novel miRstv_7 to target key genes of steviol glycosides biosynthetic pathway in Stevia rebaudiana Bertoni. Low-dose 60Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression. Genome‑wide analysis of the GT8 gene family in apple and functional identification of MhGolS2 in saline-alkali tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1