Two-layer Lagrange-based relay network topology and trajectory design for solar system explorations

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-05-23 DOI:10.1007/s11432-023-3936-7
Jun Cao, Jian Jiao, Hao Liu, Rongxing Lu, Qinyu Zhang
{"title":"Two-layer Lagrange-based relay network topology and trajectory design for solar system explorations","authors":"Jun Cao, Jian Jiao, Hao Liu, Rongxing Lu, Qinyu Zhang","doi":"10.1007/s11432-023-3936-7","DOIUrl":null,"url":null,"abstract":"<p>Exploration targeting outer planets and even the edge of the solar system is an emerging direction for the deep-space exploration in the next decades. To address this challenge, a novel two-layer Lagrange-based relay network topology is proposed in this study. Specifically, we utilize the Sun-Mars and Sun-Saturn Lagrange points (LPs) L4 and L5 to build a two-layer backbone relay network, which ensures continuous and high-efficiency communication capability for the exploration of the solar system. Furthermore, we utilize the planetary gravity assist and design the transfer trajectory of backbone relays with the help of planetary celestial body motion equations and Kepler’s laws. Moreover, we conduct link budget analysis for multihop relay transmission under Gamma-Gamma distribution, shadowed Rician fading, and additive white Gaussian noise channels in several typical exploration scenarios and validate that the LP relays can effectively support future deep-space exploration missions.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3936-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Exploration targeting outer planets and even the edge of the solar system is an emerging direction for the deep-space exploration in the next decades. To address this challenge, a novel two-layer Lagrange-based relay network topology is proposed in this study. Specifically, we utilize the Sun-Mars and Sun-Saturn Lagrange points (LPs) L4 and L5 to build a two-layer backbone relay network, which ensures continuous and high-efficiency communication capability for the exploration of the solar system. Furthermore, we utilize the planetary gravity assist and design the transfer trajectory of backbone relays with the help of planetary celestial body motion equations and Kepler’s laws. Moreover, we conduct link budget analysis for multihop relay transmission under Gamma-Gamma distribution, shadowed Rician fading, and additive white Gaussian noise channels in several typical exploration scenarios and validate that the LP relays can effectively support future deep-space exploration missions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉格朗日的两层中继网络拓扑结构和太阳系探测的轨迹设计
以外行星甚至太阳系边缘为目标的探索是未来几十年深空探索的一个新兴方向。为应对这一挑战,本研究提出了一种基于拉格朗日的新型双层中继网络拓扑结构。具体来说,我们利用太阳-火星和太阳-土星的拉格朗日点(LP)L4 和 L5 构建了一个双层骨干中继网络,从而确保太阳系探索的连续高效通信能力。此外,我们还利用行星引力辅助,借助行星天体运动方程和开普勒定律设计主干中继的传输轨迹。此外,我们还在几个典型的探索场景中,对伽马-伽马分布、阴影里氏衰落和加性白高斯噪声信道下的多跳中继传输进行了链路预算分析,并验证了 LP 中继能有效支持未来的深空探索任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1