Invasive Hemodynamic Changes Associated With Sodium-Glucose Cotransporter-2 Inhibitors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
{"title":"Invasive Hemodynamic Changes Associated With Sodium-Glucose Cotransporter-2 Inhibitors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials","authors":"Abiodun Idowu, Olayinka Adebolu, Casipit Bruce, Bede Nriagu, Endurance Evbayekha, Kevin Bryan Lo, Olayinka Afolabi-Brown, Janani Rangaswami","doi":"10.1155/2024/2735577","DOIUrl":null,"url":null,"abstract":"<p>Sodium-glucose cotransporter-2 inhibitors (SGLT2is) have been shown to lower incident heart failure (HF) and HF hospitalizations, but the mechanisms of benefit in relation to invasive hemodynamics remain unclear. Using PRISMA guidelines, we systematically reviewed multiple online databases for randomized trials evaluating the effect of SGLT2i on invasive hemodynamics. Rest and peak exercise invasive hemodynamics were measured via right heart catheterization pre- and postintervention. Random effects model meta-analysis at a 95% confidence interval was done using RevMan 5.0. A total of 3 studies with a total of 145 patients were included in the meta-analysis. SGLT2i was significantly associated with a reduction in pulmonary capillary wedge pressure at rest and peak exercise. Similarly, SGLT2i reduced mean pulmonary artery pressure at rest and peak exercise, respectively; however, this was not statistically significant. This hypothesis-generating study offers mechanistic insights into the central hemodynamic effects of SGLT2i underpinning the HF benefits of SGLT2i.</p>","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":"2024 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2735577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2735577","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2is) have been shown to lower incident heart failure (HF) and HF hospitalizations, but the mechanisms of benefit in relation to invasive hemodynamics remain unclear. Using PRISMA guidelines, we systematically reviewed multiple online databases for randomized trials evaluating the effect of SGLT2i on invasive hemodynamics. Rest and peak exercise invasive hemodynamics were measured via right heart catheterization pre- and postintervention. Random effects model meta-analysis at a 95% confidence interval was done using RevMan 5.0. A total of 3 studies with a total of 145 patients were included in the meta-analysis. SGLT2i was significantly associated with a reduction in pulmonary capillary wedge pressure at rest and peak exercise. Similarly, SGLT2i reduced mean pulmonary artery pressure at rest and peak exercise, respectively; however, this was not statistically significant. This hypothesis-generating study offers mechanistic insights into the central hemodynamic effects of SGLT2i underpinning the HF benefits of SGLT2i.
期刊介绍:
Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged.
Subject areas include (but are by no means limited to):
Acute coronary syndrome
Arrhythmias
Atherosclerosis
Basic cardiac electrophysiology
Cardiac catheterization
Cardiac remodeling
Coagulation and thrombosis
Diabetic cardiovascular disease
Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF)
Hyperlipidemia
Hypertension
Ischemic heart disease
Vascular biology
Ventricular assist devices
Molecular cardio-biology
Myocardial regeneration
Lipoprotein metabolism
Radial artery access
Percutaneous coronary intervention
Transcatheter aortic and mitral valve replacement.