Graph neural networks with configuration cross-attention for tensor compilers

Dmitrii Khizbullin, Eduardo Rocha de Andrade, Thanh Hau Nguyen, Matheus Pedroza Ferreira, David R. Pugh
{"title":"Graph neural networks with configuration cross-attention for tensor compilers","authors":"Dmitrii Khizbullin, Eduardo Rocha de Andrade, Thanh Hau Nguyen, Matheus Pedroza Ferreira, David R. Pugh","doi":"arxiv-2405.16623","DOIUrl":null,"url":null,"abstract":"With the recent popularity of neural networks comes the need for efficient\nserving of inference workloads. A neural network inference workload can be\nrepresented as a computational graph with nodes as operators transforming\nmultidimensional tensors. The tensors can be transposed and/or tiled in a\ncombinatorially large number of ways, some configurations leading to\naccelerated inference. We propose TGraph, a neural graph architecture that\nallows screening for fast configurations of the target computational graph,\nthus representing an artificial intelligence (AI) tensor compiler in contrast\nto the traditional heuristics-based compilers. The proposed solution improves\nmean Kendall's $\\tau$ across layout collections of TpuGraphs from 29.8% of the\nreliable baseline to 67.4% of TGraph. We estimate the potential CO$_2$ emission\nreduction associated with our work to be equivalent to over 50% of the total\nhousehold emissions in the areas hosting AI-oriented data centers.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent popularity of neural networks comes the need for efficient serving of inference workloads. A neural network inference workload can be represented as a computational graph with nodes as operators transforming multidimensional tensors. The tensors can be transposed and/or tiled in a combinatorially large number of ways, some configurations leading to accelerated inference. We propose TGraph, a neural graph architecture that allows screening for fast configurations of the target computational graph, thus representing an artificial intelligence (AI) tensor compiler in contrast to the traditional heuristics-based compilers. The proposed solution improves mean Kendall's $\tau$ across layout collections of TpuGraphs from 29.8% of the reliable baseline to 67.4% of TGraph. We estimate the potential CO$_2$ emission reduction associated with our work to be equivalent to over 50% of the total household emissions in the areas hosting AI-oriented data centers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为张量编译器配置交叉注意的图神经网络
近年来,随着神经网络的普及,人们需要为推理工作负载提供高效服务。神经网络推理工作负载可以表示为一个计算图,节点是变换多维张量的算子。这些张量可以通过大量组合方式进行转置和/或平铺,其中一些配置可以加快推理速度。我们提出的 TGraph 是一种神经图架构,它允许筛选目标计算图的快速配置,从而代表了一种人工智能(AI)张量编译器,与传统的基于启发式的编译器形成鲜明对比。所提出的解决方案提高了 TpuGraph 布局集合的平均 Kendall's $\tau$ 值,从可靠基线的 29.8% 提高到 TGraph 的 67.4%。我们估计,与我们的工作相关的潜在 CO$_2$ 减排量相当于面向人工智能的数据中心所在地区家庭总排放量的 50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1