Evaluation of Resource-Efficient Crater Detectors on Embedded Systems

Simon Vellas, Bill Psomas, Kalliopi Karadima, Dimitrios Danopoulos, Alexandros Paterakis, George Lentaris, Dimitrios Soudris, Konstantinos Karantzalos
{"title":"Evaluation of Resource-Efficient Crater Detectors on Embedded Systems","authors":"Simon Vellas, Bill Psomas, Kalliopi Karadima, Dimitrios Danopoulos, Alexandros Paterakis, George Lentaris, Dimitrios Soudris, Konstantinos Karantzalos","doi":"arxiv-2405.16953","DOIUrl":null,"url":null,"abstract":"Real-time analysis of Martian craters is crucial for mission-critical\noperations, including safe landings and geological exploration. This work\nleverages the latest breakthroughs for on-the-edge crater detection aboard\nspacecraft. We rigorously benchmark several YOLO networks using a Mars craters\ndataset, analyzing their performance on embedded systems with a focus on\noptimization for low-power devices. We optimize this process for a new wave of\ncost-effective, commercial-off-the-shelf-based smaller satellites.\nImplementations on diverse platforms, including Google Coral Edge TPU, AMD\nVersal SoC VCK190, Nvidia Jetson Nano and Jetson AGX Orin, undergo a detailed\ntrade-off analysis. Our findings identify optimal network-device pairings,\nenhancing the feasibility of crater detection on resource-constrained hardware\nand setting a new precedent for efficient and resilient extraterrestrial\nimaging. Code at: https://github.com/billpsomas/mars_crater_detection.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time analysis of Martian craters is crucial for mission-critical operations, including safe landings and geological exploration. This work leverages the latest breakthroughs for on-the-edge crater detection aboard spacecraft. We rigorously benchmark several YOLO networks using a Mars craters dataset, analyzing their performance on embedded systems with a focus on optimization for low-power devices. We optimize this process for a new wave of cost-effective, commercial-off-the-shelf-based smaller satellites. Implementations on diverse platforms, including Google Coral Edge TPU, AMD Versal SoC VCK190, Nvidia Jetson Nano and Jetson AGX Orin, undergo a detailed trade-off analysis. Our findings identify optimal network-device pairings, enhancing the feasibility of crater detection on resource-constrained hardware and setting a new precedent for efficient and resilient extraterrestrial imaging. Code at: https://github.com/billpsomas/mars_crater_detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估嵌入式系统上的资源节约型弹坑探测器
对火星陨石坑的实时分析对于包括安全着陆和地质勘探在内的关键任务操作至关重要。这项工作利用了最新的突破,在航天器上进行陨石坑边缘探测。我们使用火星陨石坑数据集对几个 YOLO 网络进行了严格的基准测试,分析了它们在嵌入式系统上的性能,重点是针对低功耗设备进行优化。我们针对新一轮低成本、基于商用现货的小型卫星对这一过程进行了优化。我们对不同平台(包括 Google Coral Edge TPU、AMDVersal SoC VCK190、Nvidia Jetson Nano 和 Jetson AGX Orin)上的实现进行了详细的权衡分析。我们的研究结果确定了最佳的网络-设备配对,提高了在资源有限的硬件上进行陨石坑探测的可行性,为高效、弹性的地外成像开创了新的先例。代码见:https://github.com/billpsomas/mars_crater_detection。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1