Influence of Low-Energy High-Current Electron Beam Exposure on the Phase Composition and Corrosion Resistance of the AM60 Magnesium Alloy

IF 1.1 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Physics of Metals and Metallography Pub Date : 2024-05-27 DOI:10.1134/s0031918x23603128
K. O. Akimov, K. V. Ivanov, M. G. Figurko
{"title":"Influence of Low-Energy High-Current Electron Beam Exposure on the Phase Composition and Corrosion Resistance of the AM60 Magnesium Alloy","authors":"K. O. Akimov, K. V. Ivanov, M. G. Figurko","doi":"10.1134/s0031918x23603128","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The surface of an AM60 (Al—5.5, Zn—0.2, Cu—0.009, Fe—0.005, Si—0.1, Ni —0.002, Mn—0.3 wt %, Mg—the rest) magnesium alloy was exposed to a low-energy high-current electron beam. After the irradiation, the content of the β-phase (Mg<sub>17</sub>Al<sub>12</sub>) decreases and the aluminum content increases in the alloy surface layer. After the exposure to the electron beam, the corrosion resistance of the alloy in a 1-molar NaCl solution increases significantly compared to the initial state. The physical reason for an increase in the alloy corrosion resistance after exposure to the electron beam is the higher corrosion resistance of the oxide film formed on the alloy surface due to the increased aluminum content.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x23603128","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The surface of an AM60 (Al—5.5, Zn—0.2, Cu—0.009, Fe—0.005, Si—0.1, Ni —0.002, Mn—0.3 wt %, Mg—the rest) magnesium alloy was exposed to a low-energy high-current electron beam. After the irradiation, the content of the β-phase (Mg17Al12) decreases and the aluminum content increases in the alloy surface layer. After the exposure to the electron beam, the corrosion resistance of the alloy in a 1-molar NaCl solution increases significantly compared to the initial state. The physical reason for an increase in the alloy corrosion resistance after exposure to the electron beam is the higher corrosion resistance of the oxide film formed on the alloy surface due to the increased aluminum content.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低能量大电流电子束暴露对 AM60 镁合金相组成和耐腐蚀性的影响
摘要 将 AM60(Al-5.5,Zn-0.2,Cu-0.009,Fe-0.005,Si-0.1,Ni-0.002,Mn-0.3 wt %,其余为 Mg)镁合金表面置于低能量大电流电子束中。辐照后,合金表层中的β相(Mg17Al12)含量减少,铝含量增加。经过电子束照射后,合金在 1 摩尔 NaCl 溶液中的耐腐蚀性与初始状态相比显著增加。暴露于电子束后合金耐腐蚀性增加的物理原因是铝含量增加导致合金表面形成的氧化膜具有更高的耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Metals and Metallography
Physics of Metals and Metallography 工程技术-冶金工程
CiteScore
2.00
自引率
25.00%
发文量
108
审稿时长
3 months
期刊介绍: The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.
期刊最新文献
Effect of Thermal-Kinetic Conditions of Austenite Transformation on the Structural-Phase State of Low-Carbon Steel Sheets Influence of Magnetic Field on Phase Transitions in the Antiferromagnetic Potts Model Electro-Optic Effect in Hexagonal Compounds RFeO3 On the Effect of Heating of Two-Phase Alloyed Brasses on Morphological Peculiarities of Intermetallic Inclusions Structural–Phase Transformations and Crystallographic Texture in Commercial Ti–6Al–4V Alloy with Globular Morphology of α-Phase Grains: The Rolling Plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1