Preparation and structural characterization of disordered Na-gallosilicate zeolite with natrolite framework and its K+ and NH4+ exchanged analogues

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Porous Materials Pub Date : 2024-05-27 DOI:10.1007/s10934-024-01631-7
Manjusha J. Gavhane, R. K. Jha, Kyung-Wan Nam, Deu S. Bhange
{"title":"Preparation and structural characterization of disordered Na-gallosilicate zeolite with natrolite framework and its K+ and NH4+ exchanged analogues","authors":"Manjusha J. Gavhane,&nbsp;R. K. Jha,&nbsp;Kyung-Wan Nam,&nbsp;Deu S. Bhange","doi":"10.1007/s10934-024-01631-7","DOIUrl":null,"url":null,"abstract":"<div><p>We report first time preparation and crystal structure of NH<sub>4</sub><sup>+</sup> exchanged form of highly disordered gallosilicate zeolite with natrolite framework (NAT) by ion exchange method from K-gallosilicate zeolite with natrolite framework. K<sup>+</sup> exchanged form was obtained by ion exchange with hydrothermally prepared highly disordered sodium gallosilicate zeolite with natrolite framework. Phase purity, degree of ion exchange, particle morphology, elemental mapping and thermal behaviour of Na-, K-, NH<sub>4</sub>-gallosilicate zeolites were investigated using various instrumental techniques. Crystal structures of Na-, K-, NH<sub>4</sub>-gallosilicate zeolites were obtained by Rietveld analysis of powder X-ray diffraction data collected using synchrotron source of X-rays. Refined structural models of hydrated Na-, K-, NH<sub>4</sub>-gallosilicate zeolites were compared. NH<sub>4</sub>-gallosilicate zeolite was calcined at 450 °C to obtain its H-form. The structure collapse of H-gallosilicate zeolite with natrolite framework is commented finally based on the structural characterization data.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1817 - 1825"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01631-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We report first time preparation and crystal structure of NH4+ exchanged form of highly disordered gallosilicate zeolite with natrolite framework (NAT) by ion exchange method from K-gallosilicate zeolite with natrolite framework. K+ exchanged form was obtained by ion exchange with hydrothermally prepared highly disordered sodium gallosilicate zeolite with natrolite framework. Phase purity, degree of ion exchange, particle morphology, elemental mapping and thermal behaviour of Na-, K-, NH4-gallosilicate zeolites were investigated using various instrumental techniques. Crystal structures of Na-, K-, NH4-gallosilicate zeolites were obtained by Rietveld analysis of powder X-ray diffraction data collected using synchrotron source of X-rays. Refined structural models of hydrated Na-, K-, NH4-gallosilicate zeolites were compared. NH4-gallosilicate zeolite was calcined at 450 °C to obtain its H-form. The structure collapse of H-gallosilicate zeolite with natrolite framework is commented finally based on the structural characterization data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有钠沸石骨架的无序钠镓硅酸盐沸石及其 K+和 NH4+交换类似物的制备与结构表征
我们首次报道了通过离子交换法从具有纳特罗拉特框架的 K-五倍子硅酸盐沸石制备出 NH4+ 交换形式的具有纳特罗拉特框架的高度无序五倍子硅酸盐沸石(NAT)及其晶体结构。K+ 交换形式是通过与水热法制备的具有钠沸石框架的高度无序五倍子硅酸钠沸石进行离子交换而获得的。利用各种仪器技术对 Na-、K-、NH4-五倍子硅酸盐沸石的相纯度、离子交换程度、颗粒形态、元素图谱和热行为进行了研究。通过对使用同步辐射 X 射线源收集的粉末 X 射线衍射数据进行里特维尔德分析,获得了 Na-、K-、NH4-高硅酸盐沸石的晶体结构。比较了水合 Na-、K-、NH4-高硅酸盐沸石的改进结构模型。NH4-allosilicate 沸石在 450 °C 煅烧后得到 H 型。根据结构表征数据,最后对具有纳洛石框架的 H 型allosilicate 沸石的结构坍塌进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
期刊最新文献
Correction: One-step synthesis of CuO/MCM-41 nanocomposites and their application in photocatalytic degradation of dyes Modification of SBA-15 for stabilizing supported oxides Lotus leaf-derived capacitive carbon for zinc-ion hybrid supercapacitors prepared by one-step molten salt carbonization Influence of various templates on the performance of MFI zeolite in catalytic synthesis of trioxane Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1