Clustering large mixed-type data with ordinal variables

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY Advances in Data Analysis and Classification Pub Date : 2024-05-27 DOI:10.1007/s11634-024-00595-5
Gero Szepannek, Rabea Aschenbruck, Adalbert Wilhelm
{"title":"Clustering large mixed-type data with ordinal variables","authors":"Gero Szepannek, Rabea Aschenbruck, Adalbert Wilhelm","doi":"10.1007/s11634-024-00595-5","DOIUrl":null,"url":null,"abstract":"<p>One of the most frequently used algorithms for clustering data with both numeric and categorical variables is the k-prototypes algorithm, an extension of the well-known k-means clustering. Gower’s distance denotes another popular approach for dealing with mixed-type data and is suitable not only for numeric and categorical but also for ordinal variables. In the paper a modification of the k-prototypes algorithm to Gower’s distance is proposed that ensures convergence. This provides a tool that allows to take into account ordinal information for clustering and can also be used for large data. A simulation study demonstrates convergence, good clustering results as well as small runtimes.</p>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11634-024-00595-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most frequently used algorithms for clustering data with both numeric and categorical variables is the k-prototypes algorithm, an extension of the well-known k-means clustering. Gower’s distance denotes another popular approach for dealing with mixed-type data and is suitable not only for numeric and categorical but also for ordinal variables. In the paper a modification of the k-prototypes algorithm to Gower’s distance is proposed that ensures convergence. This provides a tool that allows to take into account ordinal information for clustering and can also be used for large data. A simulation study demonstrates convergence, good clustering results as well as small runtimes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用顺序变量对大型混合型数据进行聚类
最常用的数字变量和分类变量数据聚类算法之一是 k 原型算法,它是著名的 k 均值聚类算法的扩展。高尔距离(Gower's distance)是处理混合类型数据的另一种常用方法,不仅适用于数字变量和分类变量,也适用于顺序变量。本文提出了一种对高尔距离 k 原型算法的修改,以确保收敛性。这提供了一种考虑到聚类中序数信息的工具,也可用于大型数据。模拟研究证明了该算法的收敛性、良好的聚类结果以及较小的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
期刊最新文献
Editorial for ADAC issue 4 of volume 18 (2024) Special issue on “New methodologies in clustering and classification for complex and/or big data” Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks Using Bagging to improve clustering methods in the context of three-dimensional shapes The chiPower transformation: a valid alternative to logratio transformations in compositional data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1