Thermal effect on the transient behavior of a piezomagnetic half-space subjected to dynamic anti-plane load

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2024-05-27 DOI:10.1177/10812865241251470
Xiang Zhou, Guoshuang Shui
{"title":"Thermal effect on the transient behavior of a piezomagnetic half-space subjected to dynamic anti-plane load","authors":"Xiang Zhou, Guoshuang Shui","doi":"10.1177/10812865241251470","DOIUrl":null,"url":null,"abstract":"Considering the importance of understanding the propagation of transient waves in the piezomagnetic solids, the thermal effect on the transient behavior of a piezomagnetic half-space subjected to dynamic anti-plane load is investigated analytically in this paper. Using one-sided, two-sided Laplace transformation and Cagniard–de Hoop (CH) technique, an efficient and accurate analytical derivation for the solution of the anti-plane displacement, shear stress, magnetic potential, and induction in Laplace domain is presented. The study shows that the thermal stresses developed in x-axis and y-axis directions have significant influence on the transient response of the half-space. The magnetic induction [Formula: see text] increases obviously when the thermal stress is applied in x-axis direction, while it decreases when the thermal stress is applied in y-axis direction. Approaching time of magnetic induction [Formula: see text] and [Formula: see text] will become longer with higher thermal stress in x-axis direction. With the growth of the thermal stress in x-direction, contribution from the electromagnetic–elastic head (EH) wave increases, while the contribution from the shear elastic (SE) wave and the static value of shear stress decrease.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"48 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241251470","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the importance of understanding the propagation of transient waves in the piezomagnetic solids, the thermal effect on the transient behavior of a piezomagnetic half-space subjected to dynamic anti-plane load is investigated analytically in this paper. Using one-sided, two-sided Laplace transformation and Cagniard–de Hoop (CH) technique, an efficient and accurate analytical derivation for the solution of the anti-plane displacement, shear stress, magnetic potential, and induction in Laplace domain is presented. The study shows that the thermal stresses developed in x-axis and y-axis directions have significant influence on the transient response of the half-space. The magnetic induction [Formula: see text] increases obviously when the thermal stress is applied in x-axis direction, while it decreases when the thermal stress is applied in y-axis direction. Approaching time of magnetic induction [Formula: see text] and [Formula: see text] will become longer with higher thermal stress in x-axis direction. With the growth of the thermal stress in x-direction, contribution from the electromagnetic–elastic head (EH) wave increases, while the contribution from the shear elastic (SE) wave and the static value of shear stress decrease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热效应对承受动态反面载荷的压磁半空间瞬态行为的影响
考虑到理解瞬态波在压磁固体中传播的重要性,本文分析研究了热效应对承受动态反面载荷的压磁半空间瞬态行为的影响。利用单面、双面拉普拉斯变换和 Cagniard-de Hoop(CH)技术,给出了拉普拉斯域中反平面位移、剪应力、磁势和感应的高效、精确的分析推导。研究表明,在 x 轴和 y 轴方向产生的热应力对半空间的瞬态响应有显著影响。当在 x 轴方向施加热应力时,磁感应强度[计算公式:见正文]明显增加,而当在 y 轴方向施加热应力时,磁感应强度降低。随着 x 轴方向热应力的增加,磁感应强度[计算公式:见正文]和[计算公式:见正文]的接近时间会变长。随着 x 轴方向热应力的增加,电磁弹性头(EH)波的贡献增大,而剪切弹性(SE)波的贡献和剪应力的静态值减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1