Optimizing direct air capture under varying weather conditions†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-05-27 DOI:10.1039/D4YA00200H
H. M. Schellevis, J. D. de la Combé and D. W. F. Brilman
{"title":"Optimizing direct air capture under varying weather conditions†","authors":"H. M. Schellevis, J. D. de la Combé and D. W. F. Brilman","doi":"10.1039/D4YA00200H","DOIUrl":null,"url":null,"abstract":"<p >CO<small><sub>2</sub></small> from adsorption with supported-amine sorbents using steam-assisted temperature-vacuum swing adsorption is a technology to capture CO<small><sub>2</sub></small> from the atmosphere (direct air capture). This process has many operational parameters and, on top of that, is heavily influenced by the ambient temperature and relative humidity. Identifying the minimum cost of direct air capture becomes a multi-dimensional problem in which climate conditions has to be incorporated as well. This study aims to evaluate the cost of direct air capture for year-round operation and to relate this to climate conditions. An optimization framework was developed with the ambient conditions as input parameters. This framework is able to find the minimum cost of direct air capture for a given fixed bed DAC facility and provides the corresponding operational parameters. These results were coupled to year-round weather data to find the total costs for continuous operation. We showed that the cost of CO<small><sub>2</sub></small> capture from air correlates well with the average annual temperature, with a high average temperature being more beneficial. Furthermore, climates with strong variation in weather conditions over the seasons require dynamic process control in order to operate at minimum cost of DAC. Overall, the presented optimization framework is an excellent tool to identify suitable locations for direct air capture and provide the operational parameters to minimize its cost.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 1678-1687"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00200h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00200h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 from adsorption with supported-amine sorbents using steam-assisted temperature-vacuum swing adsorption is a technology to capture CO2 from the atmosphere (direct air capture). This process has many operational parameters and, on top of that, is heavily influenced by the ambient temperature and relative humidity. Identifying the minimum cost of direct air capture becomes a multi-dimensional problem in which climate conditions has to be incorporated as well. This study aims to evaluate the cost of direct air capture for year-round operation and to relate this to climate conditions. An optimization framework was developed with the ambient conditions as input parameters. This framework is able to find the minimum cost of direct air capture for a given fixed bed DAC facility and provides the corresponding operational parameters. These results were coupled to year-round weather data to find the total costs for continuous operation. We showed that the cost of CO2 capture from air correlates well with the average annual temperature, with a high average temperature being more beneficial. Furthermore, climates with strong variation in weather conditions over the seasons require dynamic process control in order to operate at minimum cost of DAC. Overall, the presented optimization framework is an excellent tool to identify suitable locations for direct air capture and provide the operational parameters to minimize its cost.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不同天气条件下优化直接空气捕获
利用蒸汽辅助温度-真空变温吸附技术,使用支撑胺吸附剂吸附大气中的二氧化碳是一种从大气中捕获二氧化碳的技术(直接空气捕获)。该工艺有许多操作参数,而且受环境温度和相对湿度的影响很大。确定直接空气捕集的最低成本是一个多维度的问题,其中还必须考虑气候条件。本研究旨在评估全年运行的直接空气捕获成本,并将其与气候条件联系起来。以环境条件为输入参数,开发了一个优化框架。该框架能够为给定的固定床 DAC 设施找到直接空气捕集的最低成本,并提供相应的运行参数。将这些结果与全年天气数据相结合,可得出连续运行的总成本。我们的研究表明,从空气中捕获二氧化碳的成本与年平均气温密切相关,平均气温越高越有利。此外,在气候条件四季变化较大的情况下,需要进行动态过程控制,以便以最低的 DAC 成本运行。总之,所提出的优化框架是一个极好的工具,可用于确定直接空气捕集的合适地点,并提供运行参数,使其成本最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Correction: Steady states and kinetic modelling of the acid-catalysed ethanolysis of glucose, cellulose, and corn cob to ethyl levulinate. Back cover Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices Inside back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1