EMHD micropolar fluid flowing through a micro‐structural slipped surface with heat source/sink and chemical reaction

Gosikere Kenchappa Ramesh, Pradeep N. Hiremath, Javali Kotresh Madhukesh, Sabir Ali Shehzad
{"title":"EMHD micropolar fluid flowing through a micro‐structural slipped surface with heat source/sink and chemical reaction","authors":"Gosikere Kenchappa Ramesh, Pradeep N. Hiremath, Javali Kotresh Madhukesh, Sabir Ali Shehzad","doi":"10.1002/zamm.202300628","DOIUrl":null,"url":null,"abstract":"The electromagnetohydrodynamic (EMHD) has a vital role due to its importance in aerospace and plasma physics, including energy transformation systems in which interaction between the liquid and magnetic field is crucial. Further, micropolar fluids with microstructural slip is used in the lubrication and liquid crystals. From this observation, the current study is conducted to express an EMHD flow of liquid on a microstructural slipped surface. The effects of a uniform heat source/sink (HS/S) with homogeneous and heterogeneous chemical reactions have been incorporated in energy and mass profiles. The governing equations are converted to ordinary differential equations using proper similarity variables. The converted equations are computed by the implementation of Runge–Kutta–Fehlberg (RKF) 4th 5th order with shooting technique. A list of the essential dimensionless constraints and graphs showing how they are affected are provided. The outcome of the problem shows that the electric parameter will improve the velocity but decline the microrotation profile. Further, both heterogeneous and homogeneous reactions have a decreasing concentration. While the heat distribution rate increases with greater magnetic and electric fields, the surface drag force decreases.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electromagnetohydrodynamic (EMHD) has a vital role due to its importance in aerospace and plasma physics, including energy transformation systems in which interaction between the liquid and magnetic field is crucial. Further, micropolar fluids with microstructural slip is used in the lubrication and liquid crystals. From this observation, the current study is conducted to express an EMHD flow of liquid on a microstructural slipped surface. The effects of a uniform heat source/sink (HS/S) with homogeneous and heterogeneous chemical reactions have been incorporated in energy and mass profiles. The governing equations are converted to ordinary differential equations using proper similarity variables. The converted equations are computed by the implementation of Runge–Kutta–Fehlberg (RKF) 4th 5th order with shooting technique. A list of the essential dimensionless constraints and graphs showing how they are affected are provided. The outcome of the problem shows that the electric parameter will improve the velocity but decline the microrotation profile. Further, both heterogeneous and homogeneous reactions have a decreasing concentration. While the heat distribution rate increases with greater magnetic and electric fields, the surface drag force decreases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有热源/散热器和化学反应的电磁流体力学微极性流体流经微结构滑动表面
电磁流体力学(EMHD)在航空航天和等离子体物理学中发挥着重要作用,包括在液体与磁场相互作用的能量转换系统中。此外,具有微结构滑移的微极性液体被用于润滑和液晶。根据这一观察结果,目前的研究旨在表达液体在微结构滑移表面上的电磁流。均匀热源/沉(HS/S)与同质和异质化学反应的影响已被纳入能量和质量曲线。利用适当的相似变量将控制方程转换为常微分方程。转换后的方程采用 Runge-Kutta-Fehlberg (RKF) 4/5 阶射击技术进行计算。提供了基本的无量纲约束条件列表,以及显示这些约束条件如何受到影响的图表。问题的结果表明,电参数会提高速度,但会降低微自转剖面。此外,异质反应和均质反应的浓度都会下降。虽然热分布率会随着磁场和电场的增大而增加,但表面阻力却会减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow around a slender body with sharp edges Heat transfer analysis of a peristaltically induced creeping magnetohydrodynamic flow through an inclined annulus using homotopy perturbation method Mathematical modeling of convective heat transfer enhancement using circular cylinders in an inverted T‐shaped porous enclosure Numerical simulation of melting heat transport mechanism of Cross nanofluid with multiple features of infinite shear rate over a Falkner‐Skan wedge surface Wave scattering in a cracked exponentially graded magnetoelectroelastic half‐plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1