Xiaoyi Cai, Wei Wang, Hongliang Zhao, Fengqin Liu, Chao Lv, Hong Yong Sohn
{"title":"Numerical Simulation and Improvement of TSL Smelting Process: the Effect of Lance Bending","authors":"Xiaoyi Cai, Wei Wang, Hongliang Zhao, Fengqin Liu, Chao Lv, Hong Yong Sohn","doi":"10.1007/s40831-024-00848-9","DOIUrl":null,"url":null,"abstract":"<p>The lance is the heart of Top-Submerged-Lance (TSL) furnace and is also the most vulnerable part. A numerical simulation model was developed to study the TSL smelting process with a bending lance, and the effects of the bending angle on the flow field, the fluctuation and splashing, and the mean shear on the walls of the lance and the furnace body were analyzed. A VOF multi-phase model coupled with a Realizable <i>k−ε</i> turbulence model was adopted in this work. The simulation results reveal that the bending lance leads to asymmetrical flow field distribution, severer interface fluctuation, significantly higher slag splashing and mean shear stress on the walls of both lance and furnace body. The maximum instantaneous splashing quantity with the bending lances was increased by 33.3% compared to the vertical lance. An improvement by lance rotation on furnace operation was simulated to mitigate the effect of lance bending. Compared with the result of the original vertical lance, a smaller mean shear on the lance wall was achieved for a rotated lance.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"49 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00848-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lance is the heart of Top-Submerged-Lance (TSL) furnace and is also the most vulnerable part. A numerical simulation model was developed to study the TSL smelting process with a bending lance, and the effects of the bending angle on the flow field, the fluctuation and splashing, and the mean shear on the walls of the lance and the furnace body were analyzed. A VOF multi-phase model coupled with a Realizable k−ε turbulence model was adopted in this work. The simulation results reveal that the bending lance leads to asymmetrical flow field distribution, severer interface fluctuation, significantly higher slag splashing and mean shear stress on the walls of both lance and furnace body. The maximum instantaneous splashing quantity with the bending lances was increased by 33.3% compared to the vertical lance. An improvement by lance rotation on furnace operation was simulated to mitigate the effect of lance bending. Compared with the result of the original vertical lance, a smaller mean shear on the lance wall was achieved for a rotated lance.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.