A Point-Cluster-Partition Architecture for Weighted Clustering Ensemble

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-05-27 DOI:10.1007/s11063-024-11618-9
Na Li, Sen Xu, Heyang Xu, Xiufang Xu, Naixuan Guo, Na Cai
{"title":"A Point-Cluster-Partition Architecture for Weighted Clustering Ensemble","authors":"Na Li, Sen Xu, Heyang Xu, Xiufang Xu, Naixuan Guo, Na Cai","doi":"10.1007/s11063-024-11618-9","DOIUrl":null,"url":null,"abstract":"<p>Clustering ensembles can obtain more superior final results by combining multiple different clustering results. The qualities of the points, clusters, and partitions play crucial roles in the consistency of the clustering process. However, existing methods mostly focus on one or two aspects of them, without a comprehensive consideration of the three aspects. This paper proposes a three-level weighted clustering ensemble algorithm namely unified point-cluser-partition algorithm (PCPA). The first step of the PCPA is to generate the adjacency matrix by base clusterings. Then, the central step is to obtain the weighted adjacency matrix by successively weighting three layers, i.e., points, clusters, and partitions. Finally, the consensus clustering is obtained by the average link method. Three performance indexes, namely F, NMI, and ARI, are used to evaluate the accuracy of the proposed method. The experimental results show that: Firstly, as expected, the proposed three-layer weighted clustering ensemble can improve the accuracy of each evaluation index by an average value of 22.07% compared with the direct clustering ensemble without weighting; Secondly, compared with seven other methods, PCPA can achieve better clustering results and the proportion that PCPA ranks first is 28/33.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"38 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11618-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering ensembles can obtain more superior final results by combining multiple different clustering results. The qualities of the points, clusters, and partitions play crucial roles in the consistency of the clustering process. However, existing methods mostly focus on one or two aspects of them, without a comprehensive consideration of the three aspects. This paper proposes a three-level weighted clustering ensemble algorithm namely unified point-cluser-partition algorithm (PCPA). The first step of the PCPA is to generate the adjacency matrix by base clusterings. Then, the central step is to obtain the weighted adjacency matrix by successively weighting three layers, i.e., points, clusters, and partitions. Finally, the consensus clustering is obtained by the average link method. Three performance indexes, namely F, NMI, and ARI, are used to evaluate the accuracy of the proposed method. The experimental results show that: Firstly, as expected, the proposed three-layer weighted clustering ensemble can improve the accuracy of each evaluation index by an average value of 22.07% compared with the direct clustering ensemble without weighting; Secondly, compared with seven other methods, PCPA can achieve better clustering results and the proportion that PCPA ranks first is 28/33.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加权聚类组合的点-聚类-分区架构
聚类集合可以通过组合多个不同的聚类结果,获得更优越的最终结果。点、簇和分区的质量对聚类过程的一致性起着至关重要的作用。然而,现有的方法大多只关注其中的一两个方面,而没有综合考虑这三个方面。本文提出了一种三级加权聚类集合算法,即统一点-排序-分区算法(PCPA)。PCPA 的第一步是通过基础聚类生成邻接矩阵。然后,中心步骤是通过对点、聚类和分区三层连续加权得到加权邻接矩阵。最后,通过平均链接法获得共识聚类。使用三个性能指标,即 F、NMI 和 ARI,来评价所提方法的准确性。实验结果表明首先,正如预期的那样,与不加权的直接聚类集合相比,所提出的三层加权聚类集合能提高各评价指标的准确度,平均值为 22.07%;其次,与其他七种方法相比,PCPA 能取得更好的聚类结果,PCPA 排名第一的比例为 28/33。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1