Long-term autonomous time-keeping of navigation constellations based on sparse sampling LSTM algorithm

IF 9 1区 地球科学 Q1 ENGINEERING, AEROSPACE Satellite Navigation Pub Date : 2024-05-27 DOI:10.1186/s43020-024-00137-6
Shitao Yang, Xiao Yi, Richang Dong, Yifan Wu, Tao Shuai, Jun Zhang, Qianyi Ren, Wenbin Gong
{"title":"Long-term autonomous time-keeping of navigation constellations based on sparse sampling LSTM algorithm","authors":"Shitao Yang, Xiao Yi, Richang Dong, Yifan Wu, Tao Shuai, Jun Zhang, Qianyi Ren, Wenbin Gong","doi":"10.1186/s43020-024-00137-6","DOIUrl":null,"url":null,"abstract":"The system time of the four major navigation satellite systems is mainly maintained by multiple high-performance atomic clocks at ground stations. This operational mode relies heavily on the support of ground stations. To enhance the high-precision autonomous timing capability of next-generation navigation satellites, it is necessary to autonomously generate a comprehensive space-based time scale on orbit and make long-term, high-precision predictions for the clock error of this time scale. In order to solve these two problems, this paper proposed a two-level satellite timing system, and used multiple time-keeping node satellites to generate a more stable space-based time scale. Then this paper used the sparse sampling Long Short-Term Memory (LSTM) algorithm to improve the accuracy of clock error long-term prediction on space-based time scale. After simulation, at sampling times of 300 s, 8.64 × 104 s, and 1 × 106 s, the frequency stabilities of the spaceborne timescale reach 1.35 × 10–15, 3.37 × 10–16, and 2.81 × 10–16, respectively. When applying the improved clock error prediction algorithm, the ten-day prediction error is 3.16 × 10–10 s. Compared with those of the continuous sampling LSTM, Kalman filter, polynomial and quadratic polynomial models, the corresponding prediction accuracies are 1.72, 1.56, 1.83 and 1.36 times greater, respectively.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Satellite Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s43020-024-00137-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The system time of the four major navigation satellite systems is mainly maintained by multiple high-performance atomic clocks at ground stations. This operational mode relies heavily on the support of ground stations. To enhance the high-precision autonomous timing capability of next-generation navigation satellites, it is necessary to autonomously generate a comprehensive space-based time scale on orbit and make long-term, high-precision predictions for the clock error of this time scale. In order to solve these two problems, this paper proposed a two-level satellite timing system, and used multiple time-keeping node satellites to generate a more stable space-based time scale. Then this paper used the sparse sampling Long Short-Term Memory (LSTM) algorithm to improve the accuracy of clock error long-term prediction on space-based time scale. After simulation, at sampling times of 300 s, 8.64 × 104 s, and 1 × 106 s, the frequency stabilities of the spaceborne timescale reach 1.35 × 10–15, 3.37 × 10–16, and 2.81 × 10–16, respectively. When applying the improved clock error prediction algorithm, the ten-day prediction error is 3.16 × 10–10 s. Compared with those of the continuous sampling LSTM, Kalman filter, polynomial and quadratic polynomial models, the corresponding prediction accuracies are 1.72, 1.56, 1.83 and 1.36 times greater, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏采样 LSTM 算法的导航星座长期自主计时
四大导航卫星系统的系统时间主要由地面站的多个高性能原子钟维持。这种运行模式严重依赖地面站的支持。为了提高下一代导航卫星的高精度自主授时能力,有必要自主生成一个全面的天基在轨时间尺度,并对该时间尺度的时钟误差进行长期、高精度的预测。为了解决这两个问题,本文提出了两级卫星授时系统,利用多颗授时节点卫星生成更稳定的天基时标。然后,本文采用稀疏采样长短期记忆(LSTM)算法来提高天基时标时钟误差长期预测的精度。经过仿真,在采样时间为 300 s、8.64 × 104 s 和 1 × 106 s 时,天基时标频率稳定度分别达到 1.35 × 10-15、3.37 × 10-16 和 2.81 × 10-16。与连续采样 LSTM、卡尔曼滤波、多项式和二次多项式模型相比,相应的预测精度分别提高了 1.72、1.56、1.83 和 1.36 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.40
自引率
6.20%
发文量
25
审稿时长
12 weeks
期刊介绍: Satellite Navigation is dedicated to presenting innovative ideas, new findings, and advancements in the theoretical techniques and applications of satellite navigation. The journal actively invites original articles, reviews, and commentaries to contribute to the exploration and dissemination of knowledge in this field.
期刊最新文献
A novel global grid model for soil moisture retrieval considering geographical disparity in spaceborne GNSS-R Analysis of the gain factors of 5G-assisted BDS RTK positioning in urban environments A dual-base station constraint method to improve deformation monitoring precision consistency in strip regions High-precision GPS orbit determination by integrating the measurements from regional ground stations and LEO onboard receivers Multi-frequency smartphone positioning performance evaluation: insights into A-GNSS PPP-B2b services and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1