Enhancing Document Information Selection Through Multi-Granularity Responses for Dialogue Generation

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-05-28 DOI:10.1007/s11063-024-11633-w
Meiqi Wang, Kangyu Qiao, Shuyue Xing, Caixia Yuan, Xiaojie Wang
{"title":"Enhancing Document Information Selection Through Multi-Granularity Responses for Dialogue Generation","authors":"Meiqi Wang, Kangyu Qiao, Shuyue Xing, Caixia Yuan, Xiaojie Wang","doi":"10.1007/s11063-024-11633-w","DOIUrl":null,"url":null,"abstract":"<p>Document information selection is an essential part of document-grounded dialogue tasks, and more accurate information selection results can provide more appropriate dialogue responses. Existing works have achieved excellent results by employing multi-granularity of dialogue history information, indicating the effectiveness of multi-level historical information. However, these works often focus on exploring the hierarchical information of dialogue history, while neglecting the multi-granularity utilization in response, important information that holds an impact on the decoding process. Therefore, this paper proposes a model for document information selection based on multi-granularity responses. By integrating the document selection results at the response word level and semantic unit level, the model enhances its capability in knowledge selection and produces better responses. For the division at the semantic unit level of the response, we propose two semantic unit division methods, static and dynamic. Experiments on two public datasets show that our models combining static or dynamic semantic unit levels significantly outperform baseline models.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"236 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11633-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Document information selection is an essential part of document-grounded dialogue tasks, and more accurate information selection results can provide more appropriate dialogue responses. Existing works have achieved excellent results by employing multi-granularity of dialogue history information, indicating the effectiveness of multi-level historical information. However, these works often focus on exploring the hierarchical information of dialogue history, while neglecting the multi-granularity utilization in response, important information that holds an impact on the decoding process. Therefore, this paper proposes a model for document information selection based on multi-granularity responses. By integrating the document selection results at the response word level and semantic unit level, the model enhances its capability in knowledge selection and produces better responses. For the division at the semantic unit level of the response, we propose two semantic unit division methods, static and dynamic. Experiments on two public datasets show that our models combining static or dynamic semantic unit levels significantly outperform baseline models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多粒度响应加强对话生成中的文件信息选择
文档信息选择是以文档为基础的对话任务的重要组成部分,更准确的信息选择结果可以提供更恰当的对话回应。现有研究通过采用多粒度的对话历史信息取得了很好的效果,显示了多层次历史信息的有效性。然而,这些研究往往只关注了对话历史信息的层次性,而忽视了多粒度信息在应答中的利用,而这一重要信息对解码过程具有影响。因此,本文提出了一种基于多粒度响应的文档信息选择模型。该模型通过整合响应词层面和语义单元层面的文档选择结果,增强了知识选择能力,并产生了更好的响应。对于回复语义单位层面的划分,我们提出了静态和动态两种语义单位划分方法。在两个公共数据集上进行的实验表明,我们的模型结合了静态或动态语义单元级别,其效果明显优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1